【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其焦點(diǎn)與雙曲線的焦點(diǎn)重合,且橢圓的短軸的兩個端點(diǎn)與其一個焦點(diǎn)構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過雙曲線的右頂點(diǎn)作直線與橢圓交于不同的兩點(diǎn).
①設(shè),當(dāng)為定值時,求的值;
②設(shè)點(diǎn)是橢圓上的一點(diǎn),滿足,記的面積為的面積為,求的取值范圍.
【答案】(1) ;(2) ①.;②. .
【解析】
試題分析:
(1)由題意結(jié)合幾何關(guān)系可求得.則橢圓的方程為.
(2)①.由題意可得雙曲線右頂點(diǎn)為.分類討論:
當(dāng)直線的斜率存在時,聯(lián)立直線方程與橢圓方程有,則時為定值.當(dāng)直線的斜率不存在時,也滿足,則當(dāng)時為定值.
②.當(dāng)直線斜率存在時,由題意結(jié)合平行關(guān)系可得.換元后利用二次函數(shù)的性質(zhì)可得,當(dāng)直線的斜率不存在時,,則的取值范圍是.
試題解析:
(1)由題意得橢圓的焦點(diǎn)在軸上,設(shè)方程為,
其左右焦點(diǎn)為,所以,
又因?yàn)闄E圓的短軸的兩個端點(diǎn)與構(gòu)成正三角形,所以
又因?yàn)?/span>,所以.
所以橢圓的方程為.
(2)①雙曲線右頂點(diǎn)為.
當(dāng)直線的斜率存在時,設(shè)的方程為
由得
設(shè)直線與橢圓交點(diǎn),
則,
則,
所以
當(dāng),即時為定值.
當(dāng)直線的斜率不存在時,直線的方程為
由得,不妨設(shè),由可得.
,所以.
綜上所述當(dāng)時為定值.
②因?yàn)?/span>,所以,所以,
因?yàn)?/span>
原點(diǎn)到直線的距離為,
所以.
令,則,所以
因?yàn)?/span>,所以,所以,所以
當(dāng)直線的斜率不存在時,
綜上所述的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3,4五個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個數(shù),是從區(qū)間上任取的一個數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,| |=5,20a +15b +12c = , =2 ,則 的值為( )
A.
B.﹣
C.﹣
D.﹣8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|0<x<3},B= ,則集合A∩(RB)為( )
A.[0,1)
B.(0,1)
C.[1,3)
D.(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①殘差可用來判斷模型擬合的效果;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過 ;
④在一個2×2列聯(lián)表中,由計算得=13.079,則有99%的把握確認(rèn)這兩個變量間有關(guān)系(其中);
其中錯誤的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : ( )的焦點(diǎn)為 ,點(diǎn) 在拋物線 上,且 ,直線 與拋物線 交于 , 兩點(diǎn), 為坐標(biāo)原點(diǎn).
(1)求拋物線 的方程;
(2)求 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com