如果log2x+log2y=1,則x+2y的最小值是   
【答案】分析:由條件可得 x>0,y>0,且 xy=2,利用基本不等式求出 x+2y 的最小值.
解答:解:如果log2x+log2y=1,可得 log2 xy=1,x>0,y>0,且 xy=2.
則x+2y≥2=4,當且僅當x=2y 時,等號成立.
故答案為 4.
點評:本題主要考查對數(shù)運算法則和基本不等式的綜合問題,得到xy=4是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(k)是滿足不等式log2x+log2(3•2k-1-x)≥2k-1(k∈N*)的正整數(shù)x的個數(shù).
(1)求f(k)的解析式;
(2)記Sn=f(1)+f(2)+…+f(n),Pn=n2+n-1(n∈N*)試比較Sn與Pn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足不等式log2x+log2(3•2n-1-x)≥2n-1(n∈N*)的正整數(shù)x的個數(shù)記為an,數(shù)列{an}的前n項和記為Sn,則Sn=(  )
A、2n+n-1B、2n-1C、2n+1D、2n-n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域為M,
(1)求M;
(2)當x∈M時,求函數(shù)f(x)=log2x•log2(x2)+a•log2x的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設Sn是數(shù)列{
1an
}的前n項和,記f(n)=S2n-Sn
(1)求an;
(2)比較f(n+1)與f(n)的大;
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對一切大于1的自然數(shù)n和所有使不等式有意義的實數(shù)x都成立,求實數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設Sn是數(shù)列{數(shù)學公式}的前n項和,記f(n)=S2n-Sn
(1)求an;
(2)比較f(n+1)與f(n)的大;
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對一切大于1的自然數(shù)n和所有使不等式有意義的實數(shù)x都成立,求實數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

同步練習冊答案