分析 根據(jù)函數(shù)奇偶性的性質(zhì)進行求解即可.
解答 解:若0<x<1,則-1<-x<0,則f(-x)=$\frac{{2}^{-x}}{{4}^{-x}+1}$=$\frac{{4}^{x}•{2}^{-x}}{1+{4}^{x}}$=$\frac{{2}^{x}}{{4}^{x}+1}$,
∵f(x)是(-1,1)上的奇函數(shù),
∴f(-x)=-f(x),
即f(x)=-$\frac{{2}^{x}}{{4}^{x}+1}$,x>0,
同時f(0)=0,
則f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}}{{4}^{x}+1},}&{-1<x<0}\\{0,}&{x=0}\\{-\frac{{2}^{x}}{{4}^{x}+1},}&{0<x<1}\end{array}\right.$.
點評 本題主要考查函數(shù)解析式的求解,根據(jù)函數(shù)奇偶性的定義和性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=-$\frac{1}{x}$ | C. | y=$\frac{2}{x}$ | D. | y=-$\frac{2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com