【題目】在等差數(shù)列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數(shù)列. (Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.

【答案】解:(I)設(shè)等差數(shù)列{an}的公差為d, 因?yàn)閍1=1,所以an=1+d(n﹣1)
又a1 , a2 , a5成公比不為1的等比數(shù)列,則
所以(1+d)2=1×(1+4d),解得d=2或d=0(舍)
(Ⅱ)由(Ⅰ)得,an=1+2(n﹣1)=2n﹣1,
所以

【解析】(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由等差數(shù)列的通項(xiàng)公式求出an , 由等比中項(xiàng)的性質(zhì)列出方程,求出d的值;(Ⅱ)由(Ⅰ)求出an , 代入bn= 化簡,由裂項(xiàng)相消法求出數(shù)列{bn}的前n項(xiàng)和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對等差數(shù)列的性質(zhì)的理解,了解在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求證:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}共有奇數(shù)項(xiàng),所有奇數(shù)項(xiàng)和S=255,所有偶數(shù)項(xiàng)和S=﹣126,末項(xiàng)是192,則首項(xiàng)a1=(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,如果存在函數(shù)g(x),使得f(x)≥g(x)對于一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,0).
(1)若a=1,b=2.寫出函數(shù)f(x)的一個(gè)承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),且f(x)為函數(shù) 的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,PB⊥AC,AD⊥CD,且AD=CD=2 ,PA=2,點(diǎn)M在線段PD上. (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若二面角M﹣AC﹣D的大小為45°,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱ABC﹣A1B1C1中BC⊥CC1 , AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D.
(1)證明:BC⊥平面ACC1A1
(2)若二面角A﹣A1B﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,則異面直線AB1和BC1所成角的正弦值為(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

同步練習(xí)冊答案