【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計算結(jié)果:
, , , )
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預報值.
(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)的分布列與數(shù)學期望.
【答案】(1), 的預報值為24;(2)使用位置最接近的已有舊井;(3),分布列見解析.
【解析】試題分析:
(1)利用前5組數(shù)據(jù)與平均數(shù)的計算公式可得=5,=50,代入y=6.5x+a,可得a,進而定點y的預報值.
(2)根據(jù)計算公式可得, , ≈10.25, =5.25, =10.25,計算可得并且判斷出結(jié)論.
(3)由題意,1、3、5、6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,勘察優(yōu)質(zhì)井數(shù)X的可能取值為2,3,4,P(X=k)=,可得X的分布列及其數(shù)學期望.
解:
(1)因為, .
回歸直線必過樣本中心點,則.
故回歸直線方程為,當時, ,即的預報值為24.
(2)因為, , , ,
所以 ,
,即, , , .
, ,均不超過10%,因此使用位置最接近的已有舊井.
(3)由題意,1,3,5,6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,
所以勘察優(yōu)質(zhì)井數(shù)的可能取值為2,3,4,
, ,
.
X | 2 | 3 | 4 |
P |
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在半徑為3m的 圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長AB=xm,圓柱的體積為Vm3 .
(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;
(2)當x為何值時,才能使做出的圓柱形罐子體積V最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求實數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實數(shù)根,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A、B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)= ;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com