8.定義在(0,+∞)上的單調(diào)函數(shù)f(x)滿足對一切x>0總有f[f(x)-log2x]=3,則g(x)=f(x)+x-4的零點個數(shù)是1(個).

分析 設(shè)t=f(x)-log2x,則f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,由二分法分析可得h(x)的零點所在的區(qū)間為(1,2),結(jié)合函數(shù)的零點與方程的根的關(guān)系,即可得答案.

解答 解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-log2x]=3,
又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),則f(x)-log2x為定值.
設(shè)t=f(x)-log2x,則f(x)=t+log2x,
又由f(t)=3,可得t+log2t=3,可解得t=2,故f(x)=2+log2x.
函數(shù)g(x)=f(x)+x-4的零點的個數(shù),
即g(x)=log2x+x-2,
∵g(x)在(0,+∞)上為增函數(shù),
∴g(2)=1+2-2>0,g(1)=0+1-2<0,
∴g(x)在(1,2)上存在唯一的零點
故答案為:1(個)

點評 本題考查二分法求函數(shù)的零點與函數(shù)零點與方程根的關(guān)系的應(yīng)用,關(guān)鍵點和難點是求出f(x)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若a∈R,則“a=1”是“|a|=1”的充分不必要條件.(填“充分不必要”,“必要不充分”,“充要”
或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,D是AB的中點,過點D作DE∥BC,交AC于點E,若DE=4,則BC=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.50=0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=kx2-4x-8在區(qū)間[4,16]上單調(diào)遞減,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用數(shù)學(xué)歸納法證明:(1+α)n≥1+nα(其中α>-1,n是正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三棱錐P-ABC中,PA=PB=PC,AB=4,BC=5,CA=6,若△ABC的外接圓恰好是三棱錐P-ABC外接球O的一個大圓,則三棱錐P-ABC的體積為:10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當x∈(0,1)時,f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足條件:a1=1,an+1=2an+1
(1)求數(shù)列an的通項公式
(2)令${c_n}=\frac{2^n}{{{a_n}•{a_{n+1}}}}$記Tn=c1+c2+c3+…+cn  求Tn

查看答案和解析>>

同步練習(xí)冊答案