分析 (1)利用切割線定理,求出DA,證明AC為△ABC外接圓的直徑,即可求△ABC外接圓的面積;
(2)證明△EFC∽△ABC,即可證明AC•EF=AB•EC.
解答 (1)解:∵BD是△ABC外接圓的切線,
∴∠C=∠ABD,
∵∠D=∠ABD,
∴∠D=∠C,
∴BD=BC=2$\sqrt{3}$,
由切割線定理可得BD2=DA•DC,即12=DA•(DA+4),
∴DA=2,
∵∠D=∠ABD,
∴AB=AD=2,
∴△ABC中,AB2+BC2=AC2,∴AC為△ABC外接圓的直徑,
∴△ABC外接圓的面積為4π•22=16π;
(2)證明:連接CF,則∠ECF=∠BAF=∠ACB,
∵∠EFC=∠ABC,
∴△EFC∽△ABC,
∴$\frac{EF}{AB}=\frac{EC}{AC}$,
∴AC•EF=AB•EC.
點(diǎn)評 本題考查切割線定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,1] | B. | (-$\frac{1}{3}$,$\frac{1}{3}$) | C. | (-$\frac{1}{3}$,1) | D. | (-∞,-$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{15}$ | C. | $3\sqrt{5}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com