【題目】設(shè),,為兩兩不重合的平面,,,為兩兩不重合的直線,給出下列四個命題:

①若,,則;

②若,,則;

③若,,則;

④若,,則.

其中真命題是(

A.①③B.②④C.③④D.①②

【答案】C

【解析】

利用線面垂直的判定定理構(gòu)造反例,可以判定①錯誤;根據(jù)線面平行的判定定理構(gòu)造反例,可以判定②錯誤;利用面面平行和線面平行的定義可以證明③正確;根據(jù)線面平行的性質(zhì)定理和直線的平行公理,可證證明④正確.

對于①:設(shè)直線平面,當(dāng)平面都經(jīng)過直線a時,,,但是,故①錯誤;

對于②:當(dāng)時,若,,,不能得出,比如當(dāng),在平面中任意平行與直線的兩條直線,由線面平行的判定定理可知,成立,滿足條件,但結(jié)論不成立,故②錯誤;

對于③:若,根據(jù)平面平行的定義,可知沒有公共點,由于,直線與平面沒有公共點,即,故③正確;

對于④,又, ,,

同理,故,故④正確;

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若曲線與曲線在公共點處有共同的切線,求實數(shù)的值;

(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點?如果有,求出該零點;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車進駐城市,綠色出行引領(lǐng)時尚.某市有統(tǒng)計數(shù)據(jù)顯示,2020年該市共享單車用戶年齡等級分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示.若將共享單車用戶按照年齡分為“年輕人”(20歲-39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”.已知在“經(jīng)常使用單車用戶”中有是“年輕人”.

1)現(xiàn)對該市市民進行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據(jù)圖表中的數(shù)據(jù),補全下列列聯(lián)表,并根據(jù)列聯(lián)表的獨立性檢驗,判斷是否有85%的把握認為經(jīng)常使用共享單車與年齡有關(guān)?

年輕人

非年輕人

合計

經(jīng)常使用單車用戶

120

不常使用單車用戶

80

合計

160

40

200

使用共享單車情況與年齡列聯(lián)表

2)將(1)中頻率視為概率,若從該市市民中隨機任取3人,設(shè)其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機變量,求的分布列與期望.

參考數(shù)據(jù):獨立性檢驗界值表

0.15

0.10

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

其中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著年北京冬奧會臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放,將引領(lǐng)戶外用品行業(yè)市場增長.下面是年至年中國雪場滑雪人次(萬人次)與同比增長率的統(tǒng)計圖,則下面結(jié)論中不正確的是(

A.年至年,中國雪場滑雪人次逐年增加

B.年至年,中國雪場滑雪人次和同比增長率均逐年增加

C.年與年相比,中國雪場滑雪人次的同比增長率近似相等,所以同比增長人數(shù)也近似相等

D.年與年相比,中國雪場滑雪人次增長率約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zxy的關(guān)系為根據(jù)(2)的結(jié)果回答下列問題:

①年宣傳費時,年銷售量及年利潤的預(yù)報值是多少?

②年宣傳費x為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,以極點為原點,極軸所在直線為軸建立直角坐標(biāo)系,過點作傾斜角為)的直線交曲線、兩點.

1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;

2)過點的另一條直線垂直,且與曲線交于,兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:

(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時培訓(xùn)有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面五邊形中,是梯形,,,是等邊三角形.現(xiàn)將沿折起,連接、得如圖②的幾何體.

1)若點的中點,求證:平面;

2)若,在棱上是否存在點,使得二面角的余弦值為?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習(xí)冊答案