16.過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點作直線l交雙曲線于A,B兩點,則|AB|的最小值為( 。
A.1B.2C.4D.8

分析 過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點作直線l交雙曲線于A,B兩點,當l⊥x軸時,得到|AB|最短.

解答 解:過雙曲線${x^2}-\frac{y^2}{4}=1$的右焦點作直線l交雙曲線于A,B兩點,當l⊥x軸時,得到|AB|最短,
將(c,0)代入雙曲線方程,可得|AB|=$\frac{2^{2}}{a}$=8,
故選D.

點評 本題考查直線與雙曲線的位置關(guān)系,考查學生的計算能力,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(x)=ax2(a∈R),g(x)=2ln x.
(1)當a=1時,求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間.
(2)若方程f(x)=g(x)在區(qū)間[$\sqrt{2}$,e]上有兩個不等解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(2x+1)=x2,則f(5)=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.命題“?x∈R,2x+x2≤1”的否定是( 。
A.?x∈R,2x+x2>1B.?x∈R,2x+x2≥1C.?x∈R,2x+x2>1D.?x∈R,2x+x2≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式$\frac{3x-1}{2-x}≤1$的解集是( 。
A.{x|$\frac{3}{4}$≤x≤2}B.{x|$\frac{3}{4}$≤x<2}C.{x|x<2}D.{x|x>2或x≤$\frac{3}{4}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),若過其右焦點F作傾斜角為45°的直線l與雙曲線右支有兩個不同的交點,則雙曲線的離心率的范圍是(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在復平面內(nèi),復數(shù)2-i(i是虛數(shù)單位)的共軛復數(shù)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在等比數(shù)列{an}中,a1,a10是方程3x2+7x-9=0的兩根,則a4a7=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=-x3+x-1.
(Ⅰ)若y=-2x+b為f(x)的一條切線,求b值.
(Ⅱ)若f(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.
( III)若關(guān)于x的方程f (x)=k恒有三個不相等的實根,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案