(本題滿分14分) 如圖,垂直平面,,,點(diǎn)上,且

(Ⅰ)求證:;

(Ⅱ)若二面角的大小為,求的值.

 

【答案】

見解析

【解析】解:(Ⅰ)過E點(diǎn)作EFAB與點(diǎn)F,連AF,于是EF//DC

所以EFABC,又BCABC,所以EFBC;

,AC=1/2BC,所以 ,所以

,所以

,所以相似,所以,即AFBC;又AFEF=F,于是BCAEF,又AEAFE,

所以BCAE.                            ……6′

(2)解法一(空間向量法)

如右圖,以F為原點(diǎn),F(xiàn)A為x軸,F(xiàn)C為y軸,F(xiàn)E為z軸,建立空間直角坐標(biāo)系,則,于是,,

,設(shè)平面ABE的法向量為,于是,令Z1=1,得,得.

設(shè)平面ACE的法向量為,

,于是,令Z2=1,得,得.

……8′

思路分析:第一問中利用線面垂直 的判定定理和性質(zhì)定理求證即可。

第二問中,如右圖,以F為原點(diǎn),F(xiàn)A為x軸,F(xiàn)C為y軸,F(xiàn)E為z軸,建立空間直角坐標(biāo)系,則,于是,,建立空間直角坐標(biāo)系,然后表示平面的法向量的夾角得到k的值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動(dòng)點(diǎn)滿足。

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn),使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案