1.已知a=40.4,b=80.2,$c={(\frac{1}{2})^{-0.5}}$,則( 。
A.a<b<cB.a<c<bC.a>c>bD.a>b>c

分析 把3個數(shù)化為底數(shù)相同,利用指數(shù)函數(shù)的單調(diào)性判斷大小即可.

解答 解:a=40.4=20.8,b=80.2=20.6
$c={(\frac{1}{2})^{-0.5}}$=20.5
因?yàn)閥=2x是增函數(shù),
所以a>b>c.
故選:D.

點(diǎn)評 本題考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知棱長為a,各面均為等邊三角形的四面體S-ABC,求它的表面積、體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C1的中心和拋物線C2的頂點(diǎn)都在坐標(biāo)原點(diǎn)O,C1和C2有公共焦點(diǎn)F,點(diǎn)F在x軸正半軸上,且C1的長軸長、短軸長及點(diǎn)F到直線x=$\frac{{a}^{2}}{c}$的距離成等比數(shù)列.
(Ⅰ)當(dāng)C2的準(zhǔn)線與直線x=$\frac{{a}^{2}}{c}$的距離為15時,求C1及C2的方程;
(Ⅱ)設(shè)點(diǎn)F且斜率為1的直線l交C1于P,Q兩點(diǎn),交C2于M,N兩點(diǎn).當(dāng)$|PQ|=\frac{36}{7}$時,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)$a={2^{\frac{1}{2}}}$,$b={log_{\frac{1}{2}}}2$,c=log24,則( 。
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線l過點(diǎn)(0,-1),且與直線3x-y+2=0平行,則直線l方程為3x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+12,x≤0}\end{array}\right.$,則f(-10)的值是(  )
A.$\frac{1}{4}$B.4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.滿足48-x>4-2x的x的取值集合是(-8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-2x-8≤0},B={x|2a<x<a+4},全集為R,
(1)當(dāng)a=1時,求A∪B,A∩(∁RB);
(2)若A∩B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓上任意三點(diǎn)可確定的平面有(  )
A.0個B.1個C.2個D.1個或無數(shù)個

查看答案和解析>>

同步練習(xí)冊答案