下列有關(guān)命題的敘述錯誤的是(  )
A、對于命題p:?x0∈R,x02+x0+1<0,則¬p為:?x∈R,x2+x+1≥0
B、若p∧q為假命題,則p,q均為假命題
C、命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
D、x2-5x+6=0是x=2的必要不充分條件
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:A.利用“非命題”的否定即可得出;
B.利用復(fù)合命題的真假判定即可得出;
C.利用逆否命題的定義即可得出;
D.x2-5x+6=0,解得x=2,3,即可判斷出;
解答: 解:對于A.命題p:?x0∈R,x02+x0+1<0,則¬p為:?x∈R,x2+x+1≥0,正確;
對于B.p∧q為假命題,則p,q至少有一個為假命題,因此不正確;
對于C.“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”;正確,
對于D.由于x2-5x+6=0,解得x=2,3,因此x2-5x+6=0是x=2的必要不充分條件,正確.
綜上可得:只有B不正確.
故選:B.
點評:本題考查了簡易邏輯的判定,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知四棱錐P-ABCD中,底面ABCD是菱形,AB=PA=PD=2,∠ABD=60°,E是AD的中點,點Q是PC的中點.
(Ⅰ)求證:BC⊥平面BPE;
(Ⅱ)若二面P-AD-B的大小為120°,試求BQ與平ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(千臺),其總成本為G(x)(萬元),其中固定成本為3.2萬元,并且每生產(chǎn)1千臺的生產(chǎn)成本為4萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=
-0.5x2+8x-1.2,0≤x≤5
3x+11.4            , x>5 
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(Ⅰ)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(Ⅱ)工廠生產(chǎn)多少千臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,c>0,求證:a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC中,PA=PB=PC=1,且PA,PB,PC兩兩垂直,則該三棱錐外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
(1)log 
1
3
x≥1;
(2)a2x+1<a4-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=(m2+m-5)xm為定義域是R的偶函數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C,D是兩個校區(qū)的所在地,C,D到一條公路AB的垂直距離分別是CA=2km,DB=4km,AB兩端之間的距離是6km.某移動公司將在AB之間找到一點M,在M處建造一個信號塔,使得M對C,D的張角與M對C,A的張角相等(即∠CMD=∠CMA),那么點M到點A的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin2x-3cosx最大值.

查看答案和解析>>

同步練習(xí)冊答案