9.已知不等式x2+(m+1)x+m2>0的解集為R,則實(shí)數(shù)m的取值范圍為(-∞,-$\frac{1}{3}$)∪(1,+∞).

分析 不等式恒成立,需△<0,解出即可.

解答 解:∵x2+(m+1)x+m2>0的解集為R,
∴△=(m+1)2-4m2<0,
解得:m<-$\frac{1}{3}$,或m>1.
故答案為:(-∞,-$\frac{1}{3}$)∪(1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)恒成立問題、一元二次不等式的解法,考查轉(zhuǎn)化思想、考查學(xué)生解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知m>0且|x+1|+|2x-1|≥m恒成立,a,b,c∈R滿足a2+2b2+3c2=m.則a+2b+3c的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}(4-\frac{a}{2})x+2,x≤1\\ ax,x>1\end{array}$是R上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.(1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(cos 2α,sin α),向量$\overrightarrow$=(1,2sin α-1),α∈($\frac{π}{2}$,π),$\overrightarrow{a}$•$\overrightarrow$=$\frac{2}{5}$.
(1)求sin α的值
(2)求$\frac{5\sqrt{2}sin2α-4cos(α+\frac{π}{4})}{2co{s}^{2}\frac{α}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對(duì)稱,且g(x)的圖象過(4,2)點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x-1)>f(5-x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$cos(θ+\frac{π}{4})=\frac{{\sqrt{10}}}{10},θ∈(0,\frac{π}{2})$,則$sin(2θ-\frac{π}{3})$=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足:c•cosBsinC+($\sqrt{3}$a+csinB)cosC=0.
(Ⅰ)求C的大;
(Ⅱ)若c=$\sqrt{3}$,求a+b的最大值,并求取得最大值時(shí)角A,B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.把函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象向右平移$\frac{π}{8}$個(gè)單位,再向下平移2個(gè)單位所得函數(shù)的解析式為( 。
A.y=cos2x-2B.y=-cos2x-2C.y=sin2x-2D.y=-cos2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合A={x|1<x≤$\sqrt{3}$},B={x|0<x≤1},則A∪B=( 。
A.{x|x>0}B.{x|x≤$\sqrt{3}$}C.{x|0≤x≤$\sqrt{3}$}D.{x|0<x≤$\sqrt{3}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案