設(shè)a>0,且a≠1,且a≠2,則“函數(shù)y=logax在(0,+∞)上是減函數(shù)”是“函數(shù)y=(a-2)ax在R上是增函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:結(jié)合對數(shù)函數(shù),指數(shù)函數(shù)的性質(zhì)分別證明充分性和必要性,從而得到答案.
解答: 解:∵函數(shù)y=logax在(0,+∞)上是減函數(shù),
∴0<a<1,
∴a-2<0,
∴函數(shù)y=(a-2)ax在R上是增函數(shù),
故是充分條件;
若函數(shù)y=(a-2)ax在R上是增函數(shù),
則:
a-2>0
a>1
0<a<1
a-2<0
,
解得:a>2或0<a<1,
推不出函數(shù)y=logax在(0,+∞)上是減函數(shù),
故不是必要條件,
故選:A.
點評:本題考查了充分本題條件,考查了對數(shù)函數(shù),綜上函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x+1<0},B={x|x-3<0},那么集合A∪B等于(  )
A、{x|x<-3}
B、{x|x<3}
C、{x|x<-1}
D、{x|-1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的中心在原點,焦點在x軸上,離心率為
6
3
,并與直線y=x+2相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過圓D:x2+y2=4上任意一點P作橢圓C的兩條切線m,n. 求證:m⊥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

構(gòu)造如圖所示的數(shù)表,規(guī)則如下:先排兩個l作為第一層,然后在每一層的相鄰兩個數(shù)之間插入這兩個數(shù)和的a倍得下一層,其中a∈(0,
1
3
),設(shè)第n層中有an個數(shù),這an個數(shù)的和為Sn(n∈N*).
(I)求an;
(Ⅱ)證明:
n
2
a1-1
S1
+
a2-1
S2
+…+
an-1
Sn
<(
2
a+1
)n
-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x+3(x∈R),若|f(x)|<a的必要條件是|x+1|<b(a,b>0),則a,b之間的關(guān)系是(  )
A、b≥
a+1
2
B、b
a
2
C、a
b
2
D、a
b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一小型自來水廠,蓄水池中已有水450噸,水廠每小時可向蓄水池注水80噸,同時蓄水池向居民小區(qū)供水,x小時內(nèi)供水總量為80
20x
噸.現(xiàn)在開始向池中注水并同時向居民小區(qū)供水,問:
(1)多少小時后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150噸時,就會出現(xiàn)供水緊張,那么有幾個小時供水緊張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f是從數(shù)集a到b的一一映射,若a中有三個元素,則b的非空真子集的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點,其右支上一點P,滿足|PF1|=3,實軸長為1,M是y軸上一點,則
PM
•(
PF1
-
PF2
)
=( 。
A、
1
2
B、
3
2
C、
5
2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:lg2+lne-lg102+49log73.

查看答案和解析>>

同步練習(xí)冊答案