分析 (Ⅰ)求導數(shù),對 a分類討論,利用導數(shù)的正負,可得函數(shù)f(x)的單調區(qū)間;
(Ⅱ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,得到函數(shù)的最小值,從而證出結論即可.
解答 解:(Ⅰ)求導數(shù)可得f′(x)=$\frac{(x-a)(x-1)}{x}$(x>0)
(1)0<a<1時,令f′(x)<0,可得a<x<1,
∵x>0,∴a<x<1;令f′(x)>0,可得x<a或x>1,
∵x>0,∴0<x<a或x>1
∴函數(shù)f(x)在(0,a),(1,+∞)上單調遞增,在(a,1)上單調遞減;
(2)a=1時,f′(x)≥0,函數(shù)在(0,+∞)上單調遞增;
(3)a>1時,令f′(x)<0,可得1<x<a,
∵x>0,∴1<x<a;
令f′(x)>0,可得x>a或x<1,∵x>0,∴0<x<1或x>a
∴函數(shù)f(x)在(0,1),(a,+∞)上單調遞增,在(1,a)上單調遞減;
(Ⅱ)a=-1時,f(x)=-lnx+$\frac{{x}^{x}}{2}$,(x>0),
f′(x)=$\frac{(x+1)(x-1)}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)遞減,在(1,+∞)遞增,
∴x=1時,f(x)取最小值是f(1)=$\frac{1}{2}$,
故f(x)≥$\frac{1}{2}$成立.
點評 本題考查函數(shù)的單調性,考查導數(shù)知識的運用,考查分類討論的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com