【題目】(導學號:05856309)

已知拋物線C的方程為x2=4y,M(2,1)為拋物線C上一點,F為拋物線的焦點.

(Ⅰ)求|MF|;

(Ⅱ)設(shè)直線l2ykxm與拋物線C有唯一公共點P,且與直線l1y=-1相交于點Q,試問,在坐標平面內(nèi)是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標,若不存在,說明理由.

【答案】(1)2;(2) 在坐標平面內(nèi)存在點N,使得以PQ為直徑的圓恒過點N,其坐標為(0,1)

【解析】試題分析:(1)求得拋物線的焦點和準線方程,根據(jù)拋物線的定義,即可得到所求|MF|;

2)假設(shè)存在點N,使得以PQ為直徑的圓恒過點N,由直線l2y=kx+m與拋物線C有唯一公共點P知,直線l2與拋物線C相切,利用導數(shù)求出直線l2的方程,進而求出Q點坐標,根據(jù)直徑所對的圓周角為直角,利用,求出N點坐標.

試題解析:

(Ⅰ)由題可知2p=4,即p=2,由拋物線的定義可知|MF|=1+=2.

(Ⅱ)由C關(guān)于y軸對稱可知,若存在點N,使得以PQ為直徑的圓恒過點N,則點N必在y軸上.

設(shè)N(0,n),又設(shè)點P(x0,),由直線l2ykxm與曲線C有唯一公共點P知,直線l2C相切.

yx2y′=x,∴,

∴直線l2的方程為y (xx0),

y=-1得x,

Q點的坐標為(,-1),

=(x0,n),=(,-1-n).

∵點N在以PQ為直徑的圓上,

·-2-(1+n)(n)

=(1-n)n2n-2=0,①

要使方程①對x0恒成立,

必須有解得n=1,

∴在坐標平面內(nèi)存在點N,使得以PQ為直徑的圓恒過點N,其坐標為(0,1).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856264)

已知函數(shù)f(x)=aln x,e為自然對數(shù)的底數(shù).

(Ⅰ)曲線f(x)在點A(1,f(1))處的切線與坐標軸所圍成的三角形的面積為2,求實數(shù)a的值;

(Ⅱ)若f(x)≥1-恒成立,求實數(shù)a的值取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某校為幫扶困難同學,采用如下方式進行一次募捐:在不透明的箱子中放入大小均相同的白球七個,紅球三個,每位獻愛心的參與者投幣20元有一次摸獎機會,一次性從箱子中摸球三個(摸完球后將球放回),若有一個紅球,獎金10元,兩個紅球獎金20元,三個全是紅球獎金100元.

(1)求獻愛心參與者中將的概率;

(2)若該次募捐900位獻愛心參與者,求此次募捐所得善款的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.

1)求該網(wǎng)民至少購買4種商品的概率;

2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點分別是F1,F2,點P是其上一點,雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實軸長為(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆吉林省普通中學高三第二次調(diào)研】某校冬令營有三名男同學A,B,C和三名女同學X,Y,Z

1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;

2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(導學號:05856332)

已知三棱柱ABCA1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,EBB1的中點,FCB1的中點.

(Ⅰ)證明:平面AEF⊥平面CAA1C1;

(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)pf(x)在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2ax20的兩個實根,則不等式m25m3≥|x1x2|對任意實數(shù)a[1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在標準溫度和大氣壓下,人體血液中氫離子的物質(zhì)的量的濃度(單位mol/L,記作和氫氧根離子的物質(zhì)的量的濃度(單位mol/L,記作的乘積等于常數(shù).已知pH值的定義為,健康人體血液的pH值保持在7.357.45之間,那么健康人體血液中的可以為(參考數(shù)據(jù): ,

A. B. C. D.

查看答案和解析>>

同步練習冊答案