【題目】如圖,在四棱錐中,底面是菱形,平面,,點(diǎn)、分別為中點(diǎn).

1)求證:直線平面;

2)求與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)取的中點(diǎn),連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得直線平面;

2)連接,推導(dǎo)出,然后以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得直線與平面所成角的正弦值.

1)取的中點(diǎn)為,連接、

、分別為的中點(diǎn),

四邊形是菱形,的中點(diǎn),

四邊形為平行四邊形,,

,直線平面;

2)連接、,

四邊形是菱形,,是等邊三角形,

的中點(diǎn),,,

,以為坐標(biāo)原點(diǎn),、所在直線分別為、、軸建立空間直角坐標(biāo)系,

、、、,

,,

設(shè)平面的一個(gè)法向量為,

,即,令,得,

設(shè)與平面所成角為,則,

因此,平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)直線與曲線交于兩點(diǎn),記弦的中點(diǎn)為,點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi) (單位:千元)對(duì)年銷(xiāo)售量 (單位: )和年利潤(rùn) (單位:千元)的影響.對(duì)近年的年宣傳費(fèi) 和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中 , .附:對(duì)于一組數(shù)據(jù) , , ,其回歸直線 的斜率和截距的最小二乘法估計(jì)分別為 , .

1)根據(jù)散點(diǎn)圖判斷, 在哪一個(gè)適宜作為年銷(xiāo)售量 關(guān)于年宣傳費(fèi) 的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)

2)根據(jù)1小問(wèn)的判斷結(jié)果及表中數(shù)據(jù),建立 關(guān)于 的回歸方程;

3)已知這種產(chǎn)品的年利潤(rùn) 的關(guān)系為 .根據(jù)2小問(wèn)的結(jié)果回答下列問(wèn)題:

2年宣傳費(fèi) 時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?

3年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為1000012000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是否存在12個(gè)集合,,和4098個(gè)集合滿(mǎn)足下列三個(gè)條件:(1);(2)當(dāng)時(shí),;(3)當(dāng)時(shí),?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊的邊長(zhǎng)為3,點(diǎn)分別為上的點(diǎn),且滿(mǎn)足(如圖1),將沿折起到的位置,使二面角成直二面角,連接 (如圖2

1)求證: 平面;

2)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷極值點(diǎn)的個(gè)數(shù);

2)若x>0時(shí),恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)期間,隨著新型冠狀病毒肺炎疫情在全國(guó)擴(kuò)散,各省均啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),采取了一系列有效的防控措施.如測(cè)量體溫、有效隔離等.

1)現(xiàn)從深圳市某社區(qū)的體溫登記表中隨機(jī)采集100個(gè)樣本.據(jù)分析,人群體溫近似服從正態(tài)分布.表示所采集100個(gè)樣本的數(shù)值在之外的的個(gè)數(shù),求X的數(shù)學(xué)期望.

2)疫情期間,武漢大學(xué)中南醫(yī)院重癥監(jiān)護(hù)室(ICU)主任彭志勇團(tuán)隊(duì)對(duì)138例確診患者進(jìn)行跟蹤記錄.為了分析并發(fā)癥(complications)與重癥患者(ICU)有關(guān)的可信程度,現(xiàn)從該團(tuán)隊(duì)發(fā)表在國(guó)際頂級(jí)醫(yī)學(xué)期刊JAMA《美國(guó)醫(yī)學(xué)會(huì)雜志》研究論文中獲得相關(guān)數(shù)據(jù).請(qǐng)將下列2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下認(rèn)為重癥患者與并發(fā)癥有關(guān)?

附:若,則,,.

參考公式與臨界值表:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某支教隊(duì)有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動(dòng),

(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊(duì)男、女老師的人數(shù);

(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫(xiě)出的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案