一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形作側(cè)面,以它們的公共頂點(diǎn)p為頂點(diǎn),加工成一個(gè)如圖所示的正四棱錐形容器.當(dāng)x=6cm時(shí),該容器的容積為________cm3

48
分析:根據(jù)圖形,在等腰△PAB中算出高PE=5,再由勾股定理得出四棱錐的高PO=4,最后根據(jù)錐體體積公式,算出四棱錐P-ABCD的體積,即為該容器的容積.
解答:等腰△PAB中,AB=x=6,高PE=5
∴四棱錐的高PO===4
由此可得,四棱錐P-ABCD的體積為V=×S正方形ABCD×PO=×62×4=48
即得該容器的容積為48cm3
故答案為:48
點(diǎn)評:本題給出平面圖形,求翻折成的正四棱錐的體積,著重考查了正四棱錐的性質(zhì)和錐體體積公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,試建立容器的容積V與x的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10cm的正方形鐵片按圖(1)中所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)如圖(2)所示的正四棱錐形容器.在圖(1)中,x表示等腰三角形的底邊長;在圖(2)中,點(diǎn)E、F分別是四棱錐P-ABCD的棱BC,PA的中點(diǎn),
(1)證明:EF∥平面PDC;
(2)把該容器的體積V表示為x的函數(shù),并求x=8cm時(shí),三棱錐A一BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形作側(cè)面,以它們的公共頂點(diǎn)p為頂點(diǎn),加工成一個(gè)如圖所示的正四棱錐形容器.當(dāng)x=6cm時(shí),該容器的容積為
48
48
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一塊邊長為10cm的正方形鐵片按如圖1所示的虛線裁下剪開,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器.

(1)試建立容器的容積V與x的函數(shù)關(guān)系式,并求出函數(shù)的定義域.
(2)記四棱錐(如圖2)的側(cè)面積為S′,定義
V
S′
為四棱錐形容器的容率比,容率比越大,用料越合理.
如果對任意的a,b∈R+,恒有如下結(jié)論:ab≤
a2+b2
2
,當(dāng)且僅當(dāng)a=b時(shí)取等號.試用上述結(jié)論求容率比的最大值,并求容率比最大時(shí),該四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省德州市高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

一塊邊長為10cm的正方形鐵片按如圖所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,試建立容器的容積V與x的函數(shù)關(guān)系式,并求出函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊答案