【題目】如圖,在三棱錐中,已知是正三角形, 平面的中點(diǎn), 在棱上,且.

(1)求三棱錐的體積;

(2)求證: 平面;

(3)若中點(diǎn), 在棱上,且,求證: 平面.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析:(1)求解即可;(2)在底面,的中點(diǎn),連接,由題意證明,利用面面垂直的性質(zhì)定理證明平面,則可得,即可證明結(jié)論;(3) 連接, ,設(shè),證明,,即可證明結(jié)論.

試題解析:

(1)因?yàn)?/span>是正三角形,,

所以.

⊥平面,

==SBCD.

(2)在底面,的中點(diǎn),連接,

,.

,的中點(diǎn). 的中點(diǎn),

,

故因平面平面,

故平面平面.

是正三角形, 的中點(diǎn),

,平面.

平面,.

,

平面.

(3)當(dāng)時(shí),連接, .

設(shè),的中點(diǎn), 中點(diǎn),

的重心, .

= = ,

,

所以.

平面平面,

所以∥平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時(shí),函數(shù)處的切線互相垂直,求的值;

2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;

(3)是否存在正實(shí)數(shù),使得對任意正實(shí)數(shù)恒成立?若存在,求出滿足條件的實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,且橢圓經(jīng)過點(diǎn),已知點(diǎn),過點(diǎn)的動直線與橢圓相交于兩點(diǎn), 關(guān)于軸對稱.

(1)求的方程;

(2)證明: 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè)

)若,,,求方程在區(qū)間內(nèi)的解集.

)若函數(shù)滿足:圖象關(guān)于點(diǎn)對稱,在處取得最小值,試確定、應(yīng)滿足的與之等價(jià)的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢過后,某校為了解科班學(xué)生的數(shù)學(xué)、物理學(xué)習(xí)情況,利用隨機(jī)數(shù)表法從全年極名理科生抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析.已知學(xué)生考號的后三位分別為.

(Ⅰ)若從隨機(jī)數(shù)表的第行第列的數(shù)開始向右讀,請依次寫出抽取的前人的后三位考號;

(Ⅱ)如果題(Ⅰ)中隨機(jī)抽取到的名同學(xué)的數(shù)學(xué)、物理成績(單位:分)對應(yīng)如下表:

數(shù)學(xué)成績

87

91

90

89

93

物理成績

89

90

91

88

92

求這兩科成績的平均數(shù)和方差,并且分析哪科成績更穩(wěn)定。

附:(下面是摘自隨機(jī)數(shù)表的第行到第6行)

………

………

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過點(diǎn),且與圓相內(nèi)切.

I)求動圓的圓心的軌跡方程;

II)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案