數(shù)列{an}是首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,且第六項(xiàng)為正,第七項(xiàng)為負(fù).
(1)求數(shù)列的公差及通項(xiàng)an
(2)求前n項(xiàng)和Sn的最大值及相應(yīng)的n的值
(3)設(shè)bn=|an|,求數(shù)列{bn}的前16項(xiàng)之和S16的值.
分析:(1)利用等差數(shù)列的通項(xiàng)公式列出a6>0,a7<0,求出d的值;
(2)根據(jù)d<0判斷{an}是遞減數(shù)列,再由a6>0,a7<0,得出n=6時,Sn取得最大值;
(3)先求出數(shù)列{an}的前n項(xiàng)和,然后結(jié)合數(shù)列{an}的正負(fù),求出數(shù)列{bn}的前16項(xiàng)之和S′16=2S6-S16即可.
解答:解:(1)由已知a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,
解得:-
23
5
<d<-
23
6
,又d∈Z,
∴d=-4    an=27-4n;
(2)∵d<0,∴{an}是遞減數(shù)列,又a6>0,a7<0
∴當(dāng)n=6時,Sn取得最大值,S6=6×23+
6×5
2
(-4)=78
(3)Sn=23n+
n(n-1)
2
(-4)=25n-2n2
數(shù)列{bn}的前16項(xiàng)之和S′16=2S6-S16=268
點(diǎn)評:本題考查了等差數(shù)列的性質(zhì)、通項(xiàng)公式以及前n項(xiàng)和公式,(2)問d<0判斷{an}是遞減數(shù)列,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的通項(xiàng)公式是an=k•qn(k,q為不等于零的常數(shù))則下列說法中正確的是( 。
A、數(shù)列{an}是首項(xiàng)為k,公比為q的等比數(shù)列B、數(shù)列{an}是首項(xiàng)為kq,公比為q的等比數(shù)列C、數(shù)列{an}是首項(xiàng)為kq,公比為q-1的等比數(shù)列D、數(shù)列{an}不一定是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是首項(xiàng)為1的實(shí)數(shù)等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,若28S3=S6,則數(shù)列{
1
an
}的前四項(xiàng)的和為
40
27
40
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州二模)設(shè)數(shù)列{an}是首項(xiàng)為1的等比數(shù)列,若{
1
2an+an+1
}
是等差數(shù)列,則(
1
2a1
+
1
a2
)+(
1
2a2
+
1
a3
)
+…+(
1
2a2012
+
1
a2013
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是首項(xiàng)為a1,公差為d的等差數(shù)列,若數(shù)列{an}中任意不同的兩項(xiàng)之和仍是該數(shù)列的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”
(1)試寫出一個不是“封閉數(shù)列”的等差數(shù)列的通項(xiàng)公式,并說明理由;
(2)求證:數(shù)列{an}為“封閉數(shù)列”的充分必要條件是存在整數(shù)m≥-1,使a1=md.

查看答案和解析>>

同步練習(xí)冊答案