如圖,在半徑為R、圓心角為數(shù)學(xué)公式的扇形金屬材料中剪出一個長方形EPQF,并且EP與∠AOB的平分線OC平行,設(shè)∠POC=θ.
(1)試寫出用θ表示長方形EPQF的面積S(θ)的函數(shù);
(2)在余下的邊角料中在剪出兩個圓(如圖所示),試問當(dāng)矩形EPQF的面積最大時,能否由這個矩形和兩個圓組成一個有上下底面的圓柱?如果可能,求出此時圓柱的體積.

解:(1)由條件得,
從而
(2)由(1)得,
所以當(dāng)時,即取得最大值,為
此時,,
所以EPQF為正方形,依題意知制成的圓柱底面應(yīng)是由EF圍成的圓,
從而由周長,得其半徑為
另一方面,如圖所示,設(shè)圓與OA邊切于點H,連接GE、GH、GA,
設(shè)兩小圓的半徑為GH=r,則
且AH>r,從而,所以,
因0.084R<0.10R,
所以能作出滿足條件的兩個圓.此時圓柱的體積
分析:(1)在Rt△OPC中,OP=R,∠POC=θ,可求PC,OC,從而可得EF,EP,即可求長方形EPQF的面積,;
(2)制成圓柱的底面周長為EF,半徑可求,△OEF的內(nèi)切圓半徑可求,兩半徑比較得出結(jié)論.
點評:本題用柱體的側(cè)面積和體積作為載體,重點考查了三角函數(shù)的運算與性質(zhì),求側(cè)面積 S(θ)的最大值和柱體的體積時,考查了兩角和與差的運算,且運算量較大,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個圓的面積之和,則
lim
n→∞
Sn=( 。
A、2πr2
B、
8
3
πr2
C、4πr2
D、6πr2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)隨機撒一粒黃豆,它落在陰影部分內(nèi)接正三角形上的概率是(  )
A、
3
4
B、
3
3
4
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)Sn為前n個正六邊形的面積之和,則
lim
n→∞
Sn=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新人教版高三上學(xué)期單元測試(5)數(shù)學(xué)試卷 題型:選擇題

如圖,在半徑為r 的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓,又在此內(nèi)切

圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前n個圓的面積之和,則=(    )

A.2          B.    

 

C.4           D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年孝感高中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:選擇題

如圖,在半徑為r的圓內(nèi)作內(nèi)接正六邊形,再作正六邊形的內(nèi)切圓, 

又在此內(nèi)切圓內(nèi)作內(nèi)接正六邊形,如此無限繼續(xù)下去,設(shè)為前

個正六邊形的面積之和,則=(   )

A.               B.                C.               D.

 

查看答案和解析>>

同步練習(xí)冊答案