精英家教網 > 高中數學 > 題目詳情
設P是橢圓上一點,M,N分別是兩圓:上的點,則|PM|+|PN|的最小值、最大值分別為             (   )
A.4,8B.2,6C.6,8D.8,12
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩焦點和短軸的兩端點正好是一正方形的四個頂點,且焦點到橢圓上一點的最近距離為.
(1)求橢圓的標準方程;
(2)設P是橢圓上任一點,MN 是圓C:的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知圓的方程,過作直線與圓交于點,且關于直線對稱,則直線的斜率等于
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知A、B分別為曲線C:x軸的左右兩個交點,直線l過點B且x軸垂直,M為l上的一點,連結AM交曲線C于點T。
(I)當,求點T坐標;
(II)點M在x軸上方,若的面積為2,當的面積的最大值為時,求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題15分)已知拋物線,過點的直線交拋物線兩點,且
(1)求拋物線的方程;
(2)過點軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共12分)
在直角坐標系中,動點P到兩定點,的距離之和等于4,設動點P的軌跡為,過點的直線與交于A,B兩點.
(1)寫出的方程;
(2)設d為A、B兩點間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的一個焦點F1(0,-2),對應的準線方程為y=-,且離心率e滿足:,e,成等比數列.
(1)求橢圓方程;
(2)是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
平分.若存在,求出l的傾斜角的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知圓的方程是,經過圓上一點的切線方程為,類比上述方法可以得到橢圓類似的性質為________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在平面直角坐標系中,定義點之間的“直角距離”為。若到點的“直角距離”相等,其中實數滿足,則所有滿足條件的點的軌跡的長度之和為

查看答案和解析>>

同步練習冊答案