【題目】2011年國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來(lái)源于中國(guó)古代數(shù)學(xué)家祖沖之的圓周率。公元263年,中國(guó)數(shù)學(xué)家劉徽用“割圓術(shù)”計(jì)算圓周率,計(jì)算到圓內(nèi)接3072邊形的面積,得到的圓周率是.公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.1415926和過(guò)剩近似值3.1415927,還得到兩個(gè)近似分?jǐn)?shù)值,密率和約率。大約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為().在這4個(gè)圓周率的近似值中,最接近真實(shí)值的是( )
A.B.C.D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的邊長(zhǎng)為,,與交于點(diǎn).將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(I)求證:平面⊥平面;
(II)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是曲線:上的一個(gè)動(dòng)點(diǎn),曲線在點(diǎn)處的切線與軸、軸分別交于,兩點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),①;②的面積為定值;③曲線上存在兩點(diǎn),使得是等邊三角形;④曲線上存在兩點(diǎn),使得是等腰直角三角形,其中真命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)與焦距分別為方程的兩個(gè)實(shí)數(shù)根.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線過(guò)點(diǎn)且與橢圓相交于,兩點(diǎn),是橢圓的左焦點(diǎn),當(dāng)面積最大時(shí),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AC=BC,AB=2BC,D為線段AB上一點(diǎn),且AD=3DB,PD⊥平面ABC,PA與平面ABC所成的角為45°.
(1)求證:平面PAB⊥平面PCD;
(2)求二面角P﹣AC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極點(diǎn)與坐標(biāo)原點(diǎn)重合,極軸與軸非負(fù)半軸重合,是曲線上任一點(diǎn)滿足,設(shè)點(diǎn)的軌跡為.
(1)求曲線的平面直角坐標(biāo)方程;
(2)將曲線向右平移個(gè)單位后得到曲線,設(shè)曲線與直線(為參數(shù))相交于、兩點(diǎn),記點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com