精英家教網 > 高中數學 > 題目詳情
(2013•黃浦區(qū)二模)已知數列{an}具有性質:①a1為整數;②對于任意的正整數n,當an為偶數時,an+1=
an
2
;當an為奇數時,an+1=
an-1
2

(1)若a1為偶數,且a1,a2,a3成等差數列,求a1的值;
(2)設a1=2m+3(m>3且m∈N),數列{an}的前n項和為Sn,求證:Sn2m+1+3;
(3)若a1為正整數,求證:當n>1+log2a1(n∈N)時,都有an=0.
分析:(1)先設a1=2k,a2=k,得到a3=0,再分兩種情況:k是奇數,若k是偶數,即可求出a1的值;
(2)根據題意知,當m>3時,SnSm+1=1+2+…+2m+4.再利用等比數列的求和公式即可證得結果;
(3)由于n>1+log2a1,從而n-1>log2a1,得出2n-1>a1由定義可得
an+1
an
1
2
,利用累乘的形式有an=
an
an-1
an-1
an-2
•…•
a2
a1
a1
1
2n-1
a1
,從而an
1
2n-1
2n-1=1
,再根據an∈N,得出當n>1+log2a1(n∈N)時,都有an=0.
解答:解:(1)設a1=2k,a2=k,則:2k+a3=2k,a3=0
分兩種情況:k是奇數,則a3=
a2-1
2
=
k-1
2
=0
,k=1,a1=2,a2=1,a3=0
若k是偶數,則a3=
a2
2
=
k
2
=0
,k=0,a1=0,a2=0,a3=0
(2)當m>3時,a1=2m+3,a2=2m-1+1,a3=2m-2a4=2m-3,a5=2m-4,…,am=2,am+1=1,am+2=…=an=0
Sn≤1+1+3+2+22+23…+2m=5+
2(1-2m)
1-2
=2m+1
 
+3

(3)∵n>1+log2a1,∴n-1>log2a1,∴2n-1>a1
由定義可知:an+1=
an
2
,an是偶數
an-1
2
an是奇數
an
2

an+1
an
1
2

an=
an
an-1
an-1
an-2
•…•
a2
a1
a1
1
2n-1
a1

an
1
2n-1
2n-1=1

∵an∈N,∴an=0,
綜上可知:當n>1+log2a1(n∈N)時,都有an=0
點評:本題主要考查了等差數列與等比數列的綜合,同時考查了等比數列的通項公式、等比數列前n項求和公式,解題時要認真審題,仔細觀察規(guī)律,避免錯誤,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•黃浦區(qū)二模)已知f(x)=4-
1
x
,若存在區(qū)間[a,b]⊆(
1
3
,+∞)
,使得{y|y=f(x),x⊆[a,b]}=[ma,mb],則實數m的取值范圍是
(3,4)
(3,4)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃浦區(qū)二模)已知點P(x,y)的坐標滿足
x-y+1≥0
x+y-3≥0
x≤2
,O為坐標原點,則|PO|的最小值為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃浦區(qū)二模)函數f(x)=lg(4-2x)的定義域為
(-∞,2)
(-∞,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃浦區(qū)二模)若復數z滿足
.
z-1
9z
.
=0
,則z的值為
±3i
±3i

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃浦區(qū)二模)在正△ABC中,若AB=2,則
AB
AC
=
2
2

查看答案和解析>>

同步練習冊答案