【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個(gè)階段后得到銷售單價(jià)和月銷售量之間的一組數(shù)據(jù),如下表所示:
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量(萬(wàn)件) | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測(cè)月銷售量不低于12萬(wàn)件時(shí)銷售單價(jià)的最大值;
(Ⅱ)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬(wàn)件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店1萬(wàn)元;若月銷售量不低于8萬(wàn)件且不足10萬(wàn)件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店5000元;若月銷售量低于8萬(wàn)件,則沒(méi)有獎(jiǎng)勵(lì).現(xiàn)用樣本估計(jì)總體,從上述5個(gè)銷售單價(jià)中任選2個(gè)銷售單價(jià),求抽到的產(chǎn)品含有月銷量量不低于10萬(wàn)件的概率.
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
參考數(shù)據(jù):,.
【答案】(Ⅰ)回歸直線方程為,要使月銷售量不低于12萬(wàn)件,銷售單價(jià)的最大值為8.75元;(Ⅱ).
【解析】
(Ⅰ)分別求得的均值,然后計(jì)算出系數(shù),得回歸直線方程,由回歸方程可得預(yù)測(cè)值;
(Ⅱ)把銷售單價(jià)編號(hào),寫出任取2個(gè)的所有基本事件,得出指定事件所含有的基本事件的個(gè)數(shù),由古典概型概率公式可計(jì)算出概率.
(Ⅰ)∵,,
∴,則,
∴回歸直線方程為,
要使月銷售量不低于12萬(wàn)件,則有,解得,
∴月銷售單價(jià)的最大值為8.75元;
(Ⅱ)由題意可得銷售單價(jià)共有5個(gè),其中使得月銷售量不低于10萬(wàn)件的有2個(gè),記為,月銷售量不低于8萬(wàn)件不足10萬(wàn)件的有1個(gè),記為,月銷售量低于8萬(wàn)件的有2個(gè),記為,從中任取2個(gè)有:共10個(gè),抽到的產(chǎn)品含有月銷量量不低于10萬(wàn)件的有7個(gè),∴所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)求證:當(dāng)a>ln2﹣1且x>0時(shí),ex>x2﹣2ax+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義平面向量的一種運(yùn)算:(是向量和的夾角),則下列命題:
①;②;③若且,則;其中真命題的序號(hào)是___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長(zhǎng)為200米,現(xiàn)計(jì)劃建一個(gè)如圖所示的長(zhǎng)方形停車場(chǎng),停車場(chǎng)的四個(gè)頂點(diǎn)都在的三條邊上,其余的地面全部綠化.若建停車場(chǎng)的費(fèi)用為180元/平方米,綠化的費(fèi)用為60元/平方米,設(shè)米,建設(shè)工程的總費(fèi)用為元.
(1)求關(guān)于的函數(shù)表達(dá)式:
(2)求停車場(chǎng)面積最大時(shí)的值,并求此時(shí)的工程總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從,,等8人中選出5人排成一排.
(1)必須在內(nèi),有多少種排法?
(2),,三人不全在內(nèi),有多少種排法?
(3),,都在內(nèi),且,必須相鄰,與,都不相鄰,都多少種排法?
(4)不允許站排頭和排尾,不允許站在中間(第三位),有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng)為1.記.
(1)若為常數(shù)列,求的值:
(2)若為公比為2的等比數(shù)列,求的解析式:
(3)是否存在等差數(shù)列,使得對(duì)一切都成立?若存在,求出數(shù)列的通項(xiàng)公式:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫出函數(shù)在上的圖象;
(2)若為奇函數(shù),求;
(3)在(2)的前提下,將函數(shù)的圖象向左平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com