若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=
log7x(x>0)
-
1
x
(x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-7,7]內(nèi)零點(diǎn)的個(gè)數(shù)有
 
個(gè).
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x+2)=f(x),知函數(shù)y=f(x)(x∈R)是周期為2的函數(shù),進(jìn)而根據(jù)f(x)=1-x2與函數(shù)g(x)=
log7x(x>0)
-
1
x
(x<0)
的圖象得到交點(diǎn)為8個(gè).
解答: 解:因?yàn)閒(x+2)=f(x),所以函數(shù)y=f(x)(x∈R)是周期為2函數(shù),
因?yàn)閤∈[-1,1]時(shí),f(x)=1-x2,所以作出它的圖象,則y=f(x)的圖象如圖所示:(注意拓展它的區(qū)間)
再作出函數(shù)g(x)=
log7x(x>0)
-
1
x
(x<0)
的圖象,

容易得出到交點(diǎn)為12個(gè).
故答案為:12
點(diǎn)評(píng):考查答題者使用圖象輔助作題的意識(shí)與能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+
2
=0相切.過(guò)點(diǎn)(m,0)作圓的切線l交橢圓C于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)將△OAB的面積表示為m的函數(shù),并求出面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
=(1,2),
e2
=(3,4),若向量8
e1
+t
e2
與向量t2
e1
+
e2
共線,則實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x) 的導(dǎo)數(shù),若f″(x)=0 有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.已知函數(shù)f(x)=x3-3x2+2x-2,請(qǐng)解答下列問(wèn)題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo);
(2)求證f(x)的圖象關(guān)于“拐點(diǎn)”A對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax(x<0)
(a-2)x+5a(x≥0)
滿足對(duì)任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標(biāo)函數(shù)z=(a2+2b2)x+y的最大值為8,則2a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖中(1)(2)(3)(4)四個(gè)圖象各表示兩個(gè)變量x,y的對(duì)應(yīng)關(guān)系,其中表示y是x的函數(shù)關(guān)系的有( 。
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后向左平移
π
3
個(gè)單位,得函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a+c=4,且當(dāng)x=B時(shí),g(x)取得最大值,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cosα=-
4
5
,α是第三象限的角,則tan
α
2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案