A. | 4 | B. | $\frac{3\sqrt{13}}{2}$ | C. | $\frac{17\sqrt{2}}{4}$ | D. | $\sqrt{10}$ |
分析 先設(shè)直線方程和點的坐標,聯(lián)立直線與拋物線的方程得到一個一元二次方程,再利用韋達定理及$\overrightarrow{OA}$$•\overrightarrow{OB}$=6消元,最后將面積之和表示出來,探求最值問題.
解答 解:設(shè)直線AB的方程為:x=ty+m,
點A(x1,y1),B(x2,y2),
直線AB與x軸的交點為M(m,0),
x=ty+m代入y2=x,可得y2-ty-m=0,
根據(jù)韋達定理有y1•y2=-m,
∵$\overrightarrow{OA}$$•\overrightarrow{OB}$=6,
∴x1•x2+y1•y2=6,從而(y1•y2)2+y1•y2-6=0,
∵點A,B位于x軸的兩側(cè),
∴y1•y2=-3,故m=3.
不妨令點A在x軸上方,則y1>0,
又F($\frac{1}{4}$,0),
∴S△ABO+S△AFO=$\frac{1}{2}$×3×(y1-y2)+$\frac{1}{2}$×$\frac{1}{4}$y1=$\frac{13}{8}$y1+$\frac{9}{2{y}_{1}}$
≥2$\sqrt{\frac{9×13}{16}}$=$\frac{3\sqrt{13}}{2}$,
當且僅當$\frac{13}{8}$y1=$\frac{9}{2{y}_{1}}$,即y1=$\frac{6\sqrt{13}}{13}$時,取“=”號,
∴△ABO與△AFO面積之和的最小值是$\frac{3\sqrt{13}}{2}$,
故選:.
點評 求解本題時,應(yīng)考慮以下幾個要點:
1、聯(lián)立直線與拋物線的方程,消x或y后建立一元二次方程,利用韋達定理與已知條件消元,這是處理此類問題的常見模式.
2、求三角形面積時,為使面積的表達式簡單,常根據(jù)圖形的特征選擇適當?shù)牡着c高.
3、利用基本不等式時,應(yīng)注意“一正,二定,三相等”.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2k+1 | B. | 2k+2 | C. | (2k+1)+(2k+2) | D. | (k+1)+(k+2)+…+2k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{13}{9}$ | D. | $\frac{9}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,+∞) | B. | [4,+∞) | C. | (-∞,4) | D. | (4,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{3}$+y2=1 | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com