甲、乙兩射手同時射擊一目標(biāo),甲命中的概率是0.65,乙命中的概率為0.60,那么能否得出結(jié)論:目標(biāo)被命中的概率等于0.65+0.60=1.25,為什么?

答案:
解析:

不能.甲命中目標(biāo)的同時,乙也有可能命中目標(biāo).兩個事件可以同時發(fā)生,故甲命中目標(biāo)與乙命中目標(biāo)兩事件不互斥.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為,由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于1-=.這樣計算對嗎?為什么?

(2)甲、乙兩射手同時射擊一目標(biāo),甲的命中率為0.65,乙的命中率為0.60,那么能否得出結(jié)論,目標(biāo)被命中的概率等于0.65+0.60=1.25?為什么?

(3)一射手命中靶的內(nèi)圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出結(jié)論,目標(biāo)被命中的概率等于0.25+0.50=0.75?為什么?

     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩射手同時射擊一目標(biāo),甲命中的概率是0.65,乙命中的概率為0.60,那么能否得出結(jié)論:目標(biāo)被命中的概率等0.65+0.60=1.25,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為,由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于1-=.這樣計算對嗎?為什么?

    (2)甲、乙兩射手同時射擊一目標(biāo),甲的命中率為0.65,乙的命中率為0.60,那么能否得出結(jié)論,目標(biāo)被命中的概率等于0.65+0.60=1.25?為什么?

    (3)一射手命中靶的內(nèi)圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出結(jié)論,目標(biāo)被命中的概率等于0.25+0.50=0.75?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

回答下列問題:

(1)甲、乙兩射手同時射擊一目標(biāo),甲的命中率為0.65,乙的命中率為0.60,那么能否得出結(jié)論:目標(biāo)被命中的概率等于0.65+0.60=1.25,為什么?

(2)一射手命中靶的內(nèi)圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出結(jié)論:目標(biāo)被命中的概率等于0.25+0.50=0.75,為什么?

(3)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為.由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于,這樣做對嗎?說明道理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

回答下列問題:

(1)甲、乙兩射手同時射擊一目標(biāo),甲的命中率為0.65,乙的命中率為0.60,那么能否得出結(jié)論:目標(biāo)被命中的概率等于0.65+0.60=1.25,為什么?

(2)一射手命中靶的內(nèi)圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出結(jié)論:目標(biāo)被命中的概率等于0.25+0.50=0.75,為什么?

(3)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為.由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于1-=這樣做對嗎?說明道理.

查看答案和解析>>

同步練習(xí)冊答案