【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則x0稱為f(x)的“不動(dòng)點(diǎn)”.

(1)設(shè)函數(shù),求的不動(dòng)點(diǎn);

(2)設(shè)函數(shù),若對(duì)于任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;

(3)設(shè)函數(shù)定義在上,證明:若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

【答案】(1)的不動(dòng)點(diǎn)為-1和2;(2);(3)詳見解析.

【解析】

1)設(shè)x為不動(dòng)點(diǎn),則有,得,解方程即可.

2)證法一:設(shè)不動(dòng)點(diǎn),則,否則設(shè),則也為不動(dòng)點(diǎn),與已知存在唯一的不動(dòng)點(diǎn)矛盾.由此能證明若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

證法二:設(shè)a的唯一不動(dòng)點(diǎn),.設(shè),則,由唯一性,得到,從而a的不動(dòng)點(diǎn).如果f有其它的不動(dòng)點(diǎn)c,則c也是的不動(dòng)點(diǎn),由唯一性得,由此能證明若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

解:(1)由函數(shù),得

解得

的不動(dòng)點(diǎn)為-12

2)由得:

由已知,此方程有相異二實(shí)根,恒成立,即

對(duì)任意恒成立.

∴實(shí)數(shù)a的取值范圍是

證明:(3)證法一:設(shè)函數(shù)定義在上,存在唯一的不動(dòng)點(diǎn),

首先若不動(dòng)點(diǎn),則

否則設(shè),則也為不動(dòng)點(diǎn),

不動(dòng)點(diǎn)不唯一,與已知存在唯一的不動(dòng)點(diǎn)矛盾.

有不動(dòng)點(diǎn)時(shí),的不動(dòng)點(diǎn)也是的不動(dòng)點(diǎn),

∴若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

證法二:設(shè)a的唯一不動(dòng)點(diǎn),

設(shè),則

b也是的不動(dòng)點(diǎn).

由唯一性,得到,∴,從而a的不動(dòng)點(diǎn).

如果f有其它的不動(dòng)點(diǎn)c,則c也是的不動(dòng)點(diǎn),

由唯一性得,∴a的唯一不動(dòng)點(diǎn).

故若存在唯一的不動(dòng)點(diǎn),則也存在唯一的不動(dòng)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面上,點(diǎn),點(diǎn)在單位圓上且 .

(1)若點(diǎn),求的值:

(2)若,四邊形的面積用表示,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , ,

,線性回歸模型的殘差平方和e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)結(jié)論:

①函數(shù)是偶函數(shù);

②當(dāng)時(shí),函數(shù)的值域是

③若扇形的周長(zhǎng)為,圓心角為,則該扇形的弧長(zhǎng)為6 cm;

④已知定義域?yàn)?/span>的函數(shù),當(dāng)且僅當(dāng)時(shí),成立.

則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,則a的取值范圍為(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個(gè)重要話題,為了解過程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;

(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以3年的銷量得出銷量關(guān)于年份的線性回歸方程,并據(jù)此預(yù)測(cè)2017年該超市飛鶴奶粉的銷量.

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角所對(duì)的邊分別為,已知

(Ⅰ)求角的值;

(Ⅱ)記,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:)的影響,對(duì)近年的年宣傳費(fèi)和年銷售量作了初步統(tǒng)計(jì)和處理,得到的數(shù)據(jù)如下:

年宣傳費(fèi)(單位:萬元)

年銷售量(單位:

,.

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出關(guān)于的線性回歸方程;

(3)若公司計(jì)劃下一年度投入宣傳費(fèi)萬元,試預(yù)測(cè)年銷售量的值.

參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求不等式的解集;

(2)解關(guān)于的不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案