【題目】已知 的導(dǎo)函數(shù).

(1)求的極值;

(2)證明:對(duì)任意實(shí)數(shù),都有恒成立;

(3)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)

【解析】試題分析:(Ⅰ)由題意得處,進(jìn)而,分兩種情況討論,即可求解;

(Ⅱ)由,則要證 ,只需證.

,利用導(dǎo)數(shù)得出函數(shù)的性質(zhì),即可作出證明.

(Ⅲ)由(Ⅱ)知恒成立,可得,分兩種情況討論,即可求解實(shí)數(shù)的值.

試題解析:

, , ,

當(dāng)時(shí), 恒成立, 無極值;

當(dāng)時(shí), ,即,

,得;由,得,

所以當(dāng)時(shí),有極小值.

(Ⅱ)因?yàn)?/span>,所以,要證 ,只需證.

,則,且,得; ,得,

上單調(diào)遞減,在上單調(diào)遞增,

,即恒成立,

∴對(duì)任意實(shí)數(shù),都有 恒成立.

(Ⅲ)令,則,注意到,

由(Ⅱ)知恒成立,故,

①當(dāng)時(shí), ,

于是當(dāng)時(shí), ,即成立.

②當(dāng)時(shí),由)可得).

,

故當(dāng)時(shí), ,

于是當(dāng)時(shí), , 不成立.

綜上, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).

(1)設(shè)曲線處的切線為,若與點(diǎn)的距離為,求的值;

(2)若對(duì)于任意實(shí)數(shù), 恒成立,試確定的取值范圍;

(3)當(dāng)時(shí),函數(shù)上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃面向高一年級(jí)1240名學(xué)生開設(shè)校本選修課程,為確保工作的順利實(shí)施,按性別進(jìn)行分層抽樣,現(xiàn)抽取124名學(xué)生對(duì)社會(huì)科學(xué)類、自然科學(xué)類這兩大類校本選修課程進(jìn)行選課意向調(diào)查,其中男生有65人.在這124名學(xué)生中選修社會(huì)科學(xué)類的男生有22人、女生有40人.

(1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;

(2)判斷能否有99.9%的把握認(rèn)為科類的選修與性別有關(guān)?

附: ,其中

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為

為參數(shù), 為直線的傾斜角).

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有唯一的公共點(diǎn),求角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的發(fā)展,微信越來越成為人們交流的一種方式,某機(jī)構(gòu)對(duì)使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及對(duì)使用微信交流贊成人數(shù)如表:

年齡(歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為年齡45歲為分界點(diǎn)對(duì)使用微信交流的態(tài)度有差異;

年齡不低于45歲的人

年齡低于45歲的人

合計(jì)

贊成

不贊成

合計(jì)

(2)若對(duì)年齡分別在 的被調(diào)查人中各抽取一人進(jìn)行追蹤調(diào)查,求選中的2人中至少有一人贊成使用微信交流的概率.

參考公式: ,其中

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實(shí)數(shù),滿足,則都為0”時(shí),“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)都不為0”;

③把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,所得到的圖象的函數(shù)解析式為

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)400名高一學(xué)生的一周課外體育鍛煉時(shí)間進(jìn)行調(diào)查,結(jié)果如下表所示:現(xiàn)采用分層抽樣的方法抽取容量為20的樣本.

(1)其中課外體育鍛煉時(shí)間在分鐘內(nèi)的學(xué)生應(yīng)抽取多少人?

(2)若從(1)中被抽取的學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生課外體育鍛煉時(shí)間均在分鐘內(nèi)的概率.

鍛煉時(shí)間(分鐘)

人數(shù)

40

60

80

100

80

40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10cm,容器Ⅱ的兩底面對(duì)角線的長(zhǎng)分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))

1)將放在容器Ⅰ中的一端置于點(diǎn)A處,另一端置于側(cè)棱上,沒入水中部分的長(zhǎng)度;

(2)將放在容器Ⅱ中的一端置于點(diǎn)E處,另一端置于側(cè)棱上,求沒入水中部分的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“開門大吉”是某電視臺(tái)推出的游戲節(jié)目,選手面對(duì)1號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金,在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段: ; (單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.

(Ⅰ)寫出列聯(lián)表;判斷是否有的把握認(rèn)為猜對(duì)歌曲名稱是否與年齡有關(guān);說明你的理由;(如表的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(Ⅱ)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中恰好有一人在歲之間的概率. 

(參考公式: ,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案