若奇函數(shù)f(x)=3sinx+c的定義域是[a,b],則a+b+c等于( 。
A、3B、-3C、0D、無法計算
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)的性質(zhì),得到f(0)=0,并且a+b=0,得到所求.
解答: 解:因為函數(shù)f(x)=3sin x+c的定義域是[a,b],并且是奇函數(shù),
所以f(0)=0,并且a+b=0,
即3sin0+c=0,得c=0,奇函數(shù)的圖象關(guān)于原點對稱,所以a+b=0,
所以a+b+c=0;
故選:C.
點評:本題考查了函數(shù)的奇偶性的運用;如果一個函數(shù)是奇函數(shù),并且在x=0處有意義,那么f(0)=0,并且定義域關(guān)于原點對稱.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若將函數(shù)y=2sin(x+
π
4
)的圖象上各點的橫坐標縮短為原來的
1
2
倍(縱坐標不變),再向右平移
π
4
個單位,則所得圖象的一條對稱軸的方程為( 。
A、x=-
π
8
B、x=-
π
4
C、x=
π
8
D、x=
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列圖象不能作為函數(shù)圖象的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將19化為二進制的數(shù)是( 。
A、10110(2)
B、11010(2)
C、10011(2)
D、1011(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
4x
4x+2
,
(1)求證:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|-4≤x≤4},B={x|-1≤x≤3},C={x|x≤0或x≥
5
2
},
①求A∩B∩C;        
②求(∁AB)∩C;          
③求(CRC)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(0,-1),且與曲線y=xlnx相切,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+2-2
3
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半徑為極軸)中,曲線C的極坐標方程為ρ=4cosθ.
(1)分別將直線l和曲線C的方程化為直角坐標系下的普通方程;
(2)設(shè)直線l與曲線C交于P、Q兩點,求|PQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=3,AD=
3
,AA1=h,則異面直線BD與B1C1所成的角為( 。
A、30°B、60°
C、90°D、不能確定,與h有關(guān)

查看答案和解析>>

同步練習冊答案