已知直線l過點(0,-1),且與曲線y=xlnx相切,則直線l的方程為
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)出切點坐標,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求出切線的斜率,由點斜式求出切線方程,代入點(0,-1),解方程即可得到結(jié)論.
解答: 解:∵f(x)=xlnx,
∴函數(shù)的導(dǎo)數(shù)為f′(x)=1+lnx,
設(shè)切點坐標為(x0,x0lnx0),
∴f(x)=xlnx在(x0,x0lnx0)處的切線方程為y-x0lnx0=(lnx0+1)(x-x0),
∵切線l過點(0,-1),
∴-1-x0lnx0=(lnx0+1)(-x0),
解得x0=1,
∴直線l的方程為:y=x-1.
即直線方程為x-y-1=0,
故答案為:x-y-1=0.
點評:本題主要考查導(dǎo)數(shù)的幾何意義,考查直線方程的形式,求函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應(yīng)值表:
x123456
f(x)123.5621.45-7.8211.57-53.76-126.49
函數(shù)f(x)在區(qū)間[1,6]上的零點至少有( 。
A、3個B、2個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)F(x)=f(x)+x2為奇函數(shù),且g(x)=f(x)+2,若 f(1)=1,則g(-1)的值為( 。
A、1B、-3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)=3sinx+c的定義域是[a,b],則a+b+c等于( 。
A、3B、-3C、0D、無法計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分條件,求a的取值范圍;
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-x-2
的定義域為A,集合B={x||x-3|<a,a>0},若A∩B中的最小元素為2,則實數(shù)a的取值范圍是( 。
A、(0,4]
B、(0,4)
C、(1,4]
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個結(jié)論正確的個數(shù)是( 。
①y=sin|x|的圖象關(guān)于原點對稱;
②y=sin(|x|+2)的圖象是把y=sin|x|的圖象向左平移2個單位得到的;
③y=sin(x+2)的圖象是把y=sinx的圖象向左平移2個單位得到的;
④y=sin(|x|+2)的圖象是由y=sin(x+2)(x≥0)的圖象及y=-sin(x-2)(x<0)的圖象組成的.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1)滿足
a
b
,其中θ∈(0,
π
2
),則
1
sinθcosθ+cos2θ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n=1,2,3…),數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項an和bn;
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

同步練習冊答案