(1)化簡(jiǎn):
sin(α+
π
4
)
2cos2
α
2
+2sin
α
2
cos
α
2
-1

(2)若tanα=-3,求
sinα+2cosα
5cosα-sinα
的值.
考點(diǎn):二倍角的余弦,三角函數(shù)的化簡(jiǎn)求值,兩角和與差的正弦函數(shù)
專題:計(jì)算題,三角函數(shù)的求值
分析:(1)將分母化簡(jiǎn)或?qū)⒎肿诱归_(kāi),即可得出結(jié)論;
(2)先弦化切,再代入計(jì)算即可.
解答: 解:(1)
sin(α+
π
4
)
2cos2
α
2
+2sin
α
2
cos
α
2
-1
=
sin(α+
π
4
)
sinα+cosα
=
sin(α+
π
4
)
2
sin(α+
π
4
)
=
2
2

(2)
sinα+2cosα
5cosα-sinα
=
sinα
cosα
+2
5-
sinα
cosα
=
tanα+2
5-tanα
=
-3+2
5-(-3)
=-
1
8
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠ACB=90°,CD⊥AB,D為垂足,若CD=6cm,AD:DB=1:2,則AD的值是( 。
A、6cm
B、3
2
cm
C、18cm
D、3
6
cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的正方體ABCD-A1B1C1D1中.
(Ⅰ)若M、N、P分別是C1C、B1C1、D1C1的中點(diǎn),求證:平面MNP∥平面A1BD.
(Ⅱ)求直線BC1與平面ACC1A1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=a-4i,z2=8+6i,
z1
z2
為純虛數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求復(fù)數(shù)z1的平方根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c成等比數(shù)列,
(1)若B是A和C的等差中項(xiàng),求A;
(2)若b=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED,點(diǎn)Q滿足
AQ
QP
(λ>0).
(1)求證:BD⊥平面POA;
(2)求PB的最小值,并探究此時(shí)直線OQ與平面PBD所成的角是否一定大于
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax5+bx3+c的圖象過(guò)點(diǎn)(0,1),當(dāng)x=1取得極值
13
15

(1)求f(x);
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.
優(yōu)秀 非優(yōu)秀 總計(jì)
甲班 10
乙班 30
合計(jì) 105
已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(1)若a=2,求曲線y=f(x)在x=1處的切線方程;
(2)若a<
2
e2
,試判斷函數(shù)f(x)在x∈(1,e2)的零點(diǎn)個(gè)數(shù),并說(shuō)明你的理由;
(3)若f(x)有兩個(gè)相異零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

同步練習(xí)冊(cè)答案