3.某中學(xué)高三年級有400名學(xué)生參加月考,用簡單隨機抽樣的方法抽取了一個容量為50的樣本,得到數(shù)學(xué)成績的頻率分布直方圖如圖所示.
(1)求第四個小矩形的高;
(2)估計本校在這次統(tǒng)測中數(shù)學(xué)成績不低于120分的人數(shù);
(3)已知樣本中,成績在[140,150]內(nèi)的有兩名女生,現(xiàn)從成績在這個分?jǐn)?shù)段的學(xué)生中隨機選取2人做學(xué)習(xí)交流,求恰好男生女生各有一名的概率.

分析 (Ⅰ)由頻率分布直方圖,能求出第四個矩形的高.
(Ⅱ)求出成績不低于120分的頻率,由此可估計高三年級不低于120分的人數(shù).
(Ⅲ)由直方圖知,成績在[140,150]的人數(shù)是6人,其中女生為A,B,男生為c,d,e,f,利用列舉法能求出這6人中抽取2人,其中男生女生各一名的概率.

解答 (本小題滿分12分)
解:(Ⅰ)由頻率分布直方圖,
第四個矩形的高是[1-(0.010+0.012+0.020+0.030)×10]÷10=0.028.…(4分)
(Ⅱ)成績不低于1(20分)的頻率是1-(0.010+0.020)×10=0.7,
可估計高三年級不低于1(20分)的人數(shù)為400×0.7=280人.…(7分)
(Ⅲ)由直方圖知,成績在[140,150]的人數(shù)是0.012×10×50=6,
記女生為A,B,男生為c,d,e,f,這6人中抽取2人的情況有
AB,Ac,Ad,Ae,Af,Bc,Bd,Be,Bf,cd,ce,cf,de,df,ef,共15種.…(9分)
其中男生女生各一名的有8種,概率為=$\frac{8}{15}$.…(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正方體ABCD-A1B1C1D1中,點M、N分別在線段AB1、BC1上,且AM=BN.以下結(jié)論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,⑤MN與 A1C1成30°.其中有可能成立的結(jié)論的個數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a∈R,命題p:?x∈[-2,-1],x2-a≥0,命題q:?x∈R,x2+2ax-(a-2)=0.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)各項均為正的等比數(shù)列{an}滿足a4a8=3a7,則log3(a1a2…a9)等于( 。
A.38B.39C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>1\\{2^{-x+1}},x≤1\end{array}\right.$,若方程$f(x)-ax=\frac{5}{2}$有3個不同的解,則a的取值范圍是( 。
A.$(-∞,-\frac{5}{2}]$B.$(-\frac{5}{2},-\frac{3}{2}]$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$(-\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,4)滿足$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)x等于( 。
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$y=2\sqrt{2}sin(ωx+φ)$(其中ω>0,0<φ<π)的圖象的一部分如圖所示,則(  )
A.$ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$B.$ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$C.$ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$D.$ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$、$\overrightarrow$不共線,若$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow$,則四邊形ABCD是( 。
A.梯形B.平行四邊形C.矩形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)正四面體ABCD的四個面BCD,ACD,ABD,ABC的中心,分別為O1,O2,O3,O4則直線O1O2與O3O4所成角的大小為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊答案