13.正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在線段AB1、BC1上,且AM=BN.以下結(jié)論:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,⑤MN與 A1C1成30°.其中有可能成立的結(jié)論的個(gè)數(shù)為( 。
A.5B.4C.3D.2

分析 ①作NE⊥BC,MF⊥AB,垂足分別為E,F(xiàn),可得四邊形MNEF是矩形,可得MN∥FE,利用AA1⊥面AC,可得結(jié)論成立;
由①知,MN∥面AC,面AC∥平面A1B1C1D1,故MN∥平面A1B1C1D1
MN∥FE,F(xiàn)E與AC所在直線相交時(shí),MN與A1C1異面,F(xiàn)E與AC平行時(shí),則平行,故②④可能成立;
⑤EF與AC成30°時(shí),MN與 A1C1成30°.

解答 解:①作NE⊥BC,MF⊥AB,垂足分別為E,F(xiàn),
∵AM=BN,∴NE=MF,∴四邊形MNEF是矩形,
∴MN∥FE,∵AA1⊥面AC,EF?面AC,∴AA1⊥EF,∴AA1⊥MN,故①正確;
由①知,MN∥面AC,面AC∥平面A1B1C1D1,∴MN∥平面A1B1C1D1,
故③正確;
MN∥FE,F(xiàn)E與AC所在直線相交時(shí),MN與A1C1異面,F(xiàn)E與AC平行時(shí),則平行,故②④可能成立;
⑤EF與AC成30°時(shí),MN與 A1C1成30°.
故選A.

點(diǎn)評 本題考查線面平行、垂直,考查線面角的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$y=\sqrt{1-{2^x}}$的定義域是( 。
A.(-∞,0]B.[0,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在R上單調(diào)遞增的是( 。
A.y=-xB.y=log3xC.$y={x^{\frac{1}{3}}}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列關(guān)于零向量的說法不正確的是( 。
A.零向量是沒有方向的向量B.零向量的方向是任意的
C.零向量與任一向量共線D.零向量只能與零向量相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G為BC的中點(diǎn).
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.據(jù)統(tǒng)計(jì),我國每年交通事故死亡人數(shù)已經(jīng)超過了10萬人,我國汽車保有量不到全世界2%,但是交通事故死亡人數(shù)則占全球的20%,其中一個(gè)很重要的原因是國內(nèi)很多駕駛員沒有養(yǎng)成正確的駕駛習(xí)慣,沒掌握事故發(fā)生前后正確的操作方法.某地交通管理部門從當(dāng)?shù)啬绸{校當(dāng)期一班、二班學(xué)員中各隨機(jī)抽取9名學(xué)員參加交通法規(guī)知識抽測,測試成績繪制的莖葉圖如下,其中有一個(gè)成績模糊,用x表示.
(Ⅰ)平均抽測的一班、二班學(xué)員的平均分相同,求x的值,并寫出這個(gè)平均分;
(Ⅱ)若在參加測試的成績不低于90分分學(xué)員中任取兩人,求這兩個(gè)來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=e2-x+a,x∈R的圖象在點(diǎn)x=0處的切線為y=bx.
(Ⅰ)求函數(shù)f(x)的解析式.
(Ⅱ)當(dāng)x∈R時(shí),求證:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx對任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)高三年級有400名學(xué)生參加月考,用簡單隨機(jī)抽樣的方法抽取了一個(gè)容量為50的樣本,得到數(shù)學(xué)成績的頻率分布直方圖如圖所示.
(1)求第四個(gè)小矩形的高;
(2)估計(jì)本校在這次統(tǒng)測中數(shù)學(xué)成績不低于120分的人數(shù);
(3)已知樣本中,成績在[140,150]內(nèi)的有兩名女生,現(xiàn)從成績在這個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取2人做學(xué)習(xí)交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

同步練習(xí)冊答案