【題目】選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,傾斜角為α(α≠ )的直線l的參數方程為 (t為參數).以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρcos2θ﹣4sinθ=0.
(I)寫出直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)已知點P(1,0).若點M的極坐標為(1, ),直線l經過點M且與曲線C相交于A,B兩點,設線段AB的中點為Q,求|PQ|的值.
【答案】解:(Ⅰ)∵直線l的參數方程為 (t為參數). ∴直線l的普通方程為y=tanα(x﹣1),
由曲線C的極坐標方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,
∴x2﹣4y=0,
∴曲線C的直角坐標方程為x2=4y.
(Ⅱ)∵點M的極坐標為(1, ),∴點M的直角坐標為(0,1),
∴tanα=﹣1,直線l的傾斜角為 ,
∴直線l的參數方程為 ,
代入x2=4y,得 ,
設A,B兩點對應的參數為t1 , t2 ,
∵Q為線段AB的中點,
∴點Q對應的參數值為 ,
又P(1,0),則|PQ|=| |=3 .
【解析】(Ⅰ)直線l的參數方程消去參數t,能求出直線l的普通方程;由曲線C的極坐標方程能求出曲線C的直角坐標方程.(Ⅱ)求出點M的直角坐標為(0,1),從而直線l的傾斜角為 ,由此能求出直線l的參數方程,代入x2=4y,得 ,由此利用韋達定理和兩點間距離公式能求出|PQ|.
科目:高中數學 來源: 題型:
【題目】已知是橢圓與拋物線的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(1)求橢圓及拋物線的方程;
(2)設過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元. 在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:
記x表示1臺機器在三年使用期內需更換的易損零件數,y表示1臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數.
(1)若=19,求y與x的函數解析式;
(2)若要求“需更換的易損零件數不大于”的頻率不小于0.8,求的最小值;
(3)假設這100臺機器在購機的同時每臺都購買18個易損零件,或每臺都購買19個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買18個還是19個易損零件?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張三同學從7歲起到13歲每年生日時對自己的身高測量后記錄如表:
年齡 (歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高y關于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預測張三同學15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
= , .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設分別為雙曲線的左、右頂點,雙曲線的實軸長為,焦點到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線與雙曲線的右支交于兩點,且在雙曲線的右支上存在點,使,求的值及點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓的圓心在軸上,并且過兩點.
(1)求圓的方程;
(2)設直線與圓交于兩點,那么以為直徑的圓能否經過原點,若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com