分析 (1)由三角形的內角和定理及誘導公式化簡已知的等式4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,再根據二倍角的余弦函數公式化簡,合并整理后得到關于cosC的方程,求出方程的解得到cosC的值,由C為三角形的內角,利用特殊角的三角函數值即可求出C的度數;
(2)利用余弦定理表示出c2=a2+b2-2abcosC,再根據完全平方公式變形后,將a+b,c及cosC的值代入求出ab的值,然后再由ab,sinC的值,利用三角形的面積公式即可求出三角形ABC的面積.
解答 解:(1)∵A+B+C=180°,
∴$\frac{A+B}{2}$=90°-$\frac{C}{2}$,
由4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$得:4cos2$\frac{C}{2}$-cos2C=$\frac{7}{2}$,
∴4•$\frac{1+cosC}{2}$-(2cos2C-1)=$\frac{7}{2}$,
整理得:4cos2C-4cosC+1=0,
解得:cosC=$\frac{1}{2}$,
∵0°<C<180°,
∴C=60°;
(2)由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-ab,
∴7=(a+b)2-3ab=25-3ab?ab=6,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×6×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
點評 此題屬于解三角形的題型,涉及的知識有:誘導公式,二倍角的余弦函數公式,余弦定理,三角形的面積公式,以及完全平方公式的運用,熟練掌握公式及定理是解本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com