精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=
3
,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當AB的長為何值時,二面角A-EF-C的大小為45°?
分析:(I)以點C為坐標原點,以CB,CF和CD分別為作x軸,y軸和z軸,建立空間直角坐標系,設AB=a,BE=b,CF=c,(b<c),根據|
FE
|=2
,即可求出向量
FE
,然后利用異面直線所在的向量的夾角公式求出所成角即可求得異面直線AD與EF所成角;
(II)先求出平面AEF的法向量,然后求出
BA
,利用向量的夾角公式求出兩向量的夾角,根據二面角平面角的大小建立等式,即可求出此時AB的長.
解答:解:如圖,以點C為坐標原點,以CB,CF和CD分別為作x軸,y軸和z軸,建立空間直角坐標系
設AB=a,BE=b,CF=c,(b<c)
C(0,0,0),A(
3
,0,a),B(
3
,0,0),E(
3
,b,0)
,
F(0,c,0),D(0,0,a)(2分)
(I)
DA
=(
3
,0,0),
CB
=(
3
,0,0),
FE
=(
3
,b-c,0)
,
|
FE
|=2
,得3+(b-c)2=4,∴b-c=-1.
所以
FE
=(
3
,-1,0)

所以cos<
DA
,
FE
>=
DA
FE
|
DA
|•|
FE
|
=
3
3
×2
=
3
2
,
所以異面直線AD與EF成30°
(II)設
n
=(1,y,z)
為平面AEF的法向量,則
n
AE
=0,
n
EF
=0
,
精英家教網結合|
BC
|2+|
BE
|2=|
CF
|2-|
EF
|2
,
解得
n
=(1,
3
,
3
3
a
)
.(8分)
又因為BA⊥平面BEFC,
BA
=(0,0,a)
,
所以cos<
n
,
BA
n
BA
|
n
|•|
BA
|
=
3
3
a
a
4a2+27
=
2
2

得到a=
3
3
2

所以當AB為
3
3
2
時,二面角A-EF-C的大小為45°.
點評:本題主要考查了異面直線的所成角的度量,以及二面角的度量,考查空間想象能力和思維能力,應用向量知識解決立體幾何問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
3
,EF=2

(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當AB的長為何值時,二面角A-EF-C的大小為60°?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2.
(I)求證:DF∥平面ABE;
(II)設
CF
CD
=λ,問:當λ取何值時,二面角D-EF-C的大小為
π
6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,矩形ABCD和矩形BCEF所在平面互相垂直,G為邊BF上一點,∠CGE=90°,AD=
3
,GE=2.
(1)求證:直線AG∥平面DCE;
(2)當AB=
2
時,求直線AE與面ABF所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3
,
EF=2.
(1)求異面直線AD與EF所成的角;
(2)當二面角D-EF-C的大小為45°時,求二面角A-EC-B的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3
,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當二面角D-EF-B的大小為45°時,求二面角A-EC-F的大。

查看答案和解析>>

同步練習冊答案