8.sin$\frac{7}{6}$π=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 由條件利用誘導公式化簡所給的三角函數(shù)式,可得結(jié)果.

解答 解:sin$\frac{7π}{6}$=-sin$\frac{π}{6}$=-$\frac{1}{2}$,
故選:D.

點評 本題主要考查利用誘導公式進行化簡求值,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)集合M={x|x=a},N={x|ax-1=0},若M∩N=N,則實數(shù)a的值為( 。
A.1或0B.-1或0C.1或-1D.0或1或-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知橢圓過點(0,3)且與雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}$=1有相同的焦點,則橢圓的標準方程為( 。
A.$\frac{{x}^{2}}{7}+\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(1,cosx)
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求tanx的值
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,求函數(shù)f(x)的最小正周期以及最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知拋物線C:y2=4x的焦點為F,直線L:x=ty+1與C交于P(x1,y1),Q(x1,y2)兩點,若$\overrightarrow{PF}$=λ$\overrightarrow{FQ}$.
(1)若λ=1,求|PQ|的長;
(2)若λ∈[$\frac{1}{2}$,2],求|PQ|的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象,可看作是把函數(shù)y=3sin2x的圖象作以下哪個平移得到(  )
A.向左平移$\frac{π}{3}$B.向右平移$\frac{π}{3}$C.向左平移$\frac{π}{6}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在棱長為1的正方體ABCD-A1B1C1D1中,M是A1D1的中點,點P在側(cè)面 BCC1B1上運動.現(xiàn)有下列命題:
①若點P總保持PA⊥BD1,則動點P的軌跡所在的曲線是直線;
②若點P到點A的距離為$\frac{2\sqrt{3}}{3}$,則動點P的軌跡所在的曲線是圓;
③若P滿足∠MAP=∠MAC1,則動點P的軌跡所在的曲線是橢圓;
④若P到直線BC與直線C1D1的距離比為2:1,則動點P的軌跡所在的曲線是雙曲線;
⑤若P到直線AD與直線CC1的距離相等,則動點P的軌跡所在的曲線是拋物線.
其中真命題的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若acosθ-sinθ=1,asinθ+cosθ=1,則sinθ=-$\frac{1}{2}$或0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某市A,B兩所中學的學生組隊參加信息聯(lián)賽,A中學推薦了3名男生、2名女生,B中學推薦了3名男生、4名女生,兩校所推薦的學生一起參加集訓.由于集訓后隊員水平相當,從參加集訓的男生中隨機抽取3人、女生中隨機抽取3人組成代表隊參賽.
(Ⅰ)求A中學至少有1名學生入選代表隊的概率;
(Ⅱ)設(shè)X表示A中學參賽的男生人數(shù),求X的分布列和數(shù)學期望;
(Ⅲ)已知3名男生的比賽成績分別為76,80,84,3名女生的比賽成績分別為77,a(a∈N*),81,若3名男生的比賽成績的方差大于3名女生的比賽成績的方差,寫出a的取值范圍(不要求過程).

查看答案和解析>>

同步練習冊答案