(理)橢圓數(shù)學(xué)公式上的點(diǎn)到直線數(shù)學(xué)公式的最近距離d=


  1. A.
    4
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:設(shè)橢圓上的點(diǎn)P(2cosθ,sinθ),利用點(diǎn)到直線間的距離公式=即可得到所求答案.
解答:∵橢圓的參數(shù)方程為:,
∴設(shè)橢圓上的點(diǎn)P(2cosθ,sinθ),
則點(diǎn)P到直線的距離=(tanφ=-),
∴dmin=
故選C.
點(diǎn)評:本題考查直線與圓錐曲線的關(guān)系,解決的關(guān)鍵在于根據(jù)橢圓的參數(shù)方程設(shè)出橢圓上的點(diǎn)P(2cosθ,sinθ),著重考查點(diǎn)到直線的距離公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2007年上海市郊區(qū)部分區(qū)縣高三調(diào)研考試數(shù)學(xué)卷 題型:044

設(shè)橢圓C∶(a>0)的兩個焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).

(1)求a的取值范圍;

(2)(理)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;

(文)如果橢圓的兩個焦點(diǎn)與短軸的兩個端點(diǎn)恰好是正方形的四個頂點(diǎn),求橢圓的方程;

(3)(理)對(2)中的橢圓C,直線l∶y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實數(shù)m的取值范圍.

(文)過(2)中橢圓右焦點(diǎn)F2且不與坐標(biāo)軸垂直的直線l交橢圓于M、N兩點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年臨沂市質(zhì)檢一理) (12分)設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓上的一點(diǎn),AF2⊥F1F2,原點(diǎn)O到直線AF1的距離為

   (1)求橢圓的離心率;

   (2)若左焦點(diǎn)F1(-1,0)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線交橢圓于B,C兩點(diǎn),線段BC的垂直平分線與x軸交于G,求點(diǎn)G橫坐標(biāo)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年天津卷理)(14分)

設(shè)橢圓的左、右焦點(diǎn)分別為是橢圓上的一點(diǎn)原點(diǎn)到直線的距離為.

    (I)證明:;

    (II)設(shè)為橢圓上的兩個動點(diǎn)過原點(diǎn)作直線的垂線垂足為求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓G:=1(a>b>0)的兩個焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上一點(diǎn),且滿足F1M·F2M=0.

(1)求離心率e的取值范圍.

(2)當(dāng)離心率e取得最小值時,點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為.

①求此時橢圓G的方程;

②(理)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

(文)設(shè)斜率為1的直線與橢圓G相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),點(diǎn)P的坐標(biāo)為(0),若直線PQ垂直平分弦AB,求AB所在的直線方程.

查看答案和解析>>

同步練習(xí)冊答案