3.解不等式
(1)$\frac{x-1}{x}$≥2;
(2)-1<$\frac{1}{x}$≤3;
(3)$\frac{2x+1}{x-3}$>$\frac{2x+1}{3x-2}$.

分析 (1)通分,化為不等式組,解出即可;(2)通過討論x的范圍,得到不等式組,解出即可;(3)通分,化為不等式組,解出即可.

解答 解:(1):∵$\frac{x-1}{x}$≥2,
∴$\frac{x-1}{x}$-$\frac{2x}{x}$≥0,
∴$\frac{x+1}{x}$≤0,
∴$\left\{\begin{array}{l}{x+1≥0}\\{x<0}\end{array}\right.$,解得:-1≤x<0;
∴不等式的解集是:{x|-1≤x<0}.
(2)∵-1<$\frac{1}{x}$≤3,∴$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{\frac{1}{x}≤3}\end{array}\right.$,
①x>0時:$\left\{\begin{array}{l}{1>-x}\\{1≤3x}\end{array}\right.$,解得:x≥$\frac{1}{3}$,
②x<0時:$\left\{\begin{array}{l}{1<-x}\\{1≥3x}\end{array}\right.$,解得:x<-1,
綜上:不等式的解集是:{x|x≥$\frac{1}{3}$或x<-1}.
(3)∵$\frac{2x+1}{x-3}$>$\frac{2x+1}{3x-2}$,
∴(2x+1)•$[\frac{3x-2}{(x-3)(3x-2)}-\frac{x-3}{(x-3)(3x-2)}]$>0,
∴$\frac{{(2x+1)}^{2}}{(x-3)(3x-2)}$>0,
∴$\left\{\begin{array}{l}{2x+1≠0}\\{(x-3)(3x-2)>0}\end{array}\right.$,解得:x>3或x<$\frac{2}{3}$且x≠-$\frac{1}{2}$,
∴不等式的解集是:{x|x>3或x<$\frac{2}{3}$且x≠-$\frac{1}{2}$}.

點(diǎn)評 本題考查了不等式的解法,熟練掌握解不等式的基本步驟是解題的關(guān)鍵,本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)A(-2,3)作拋物線:y2=4x的兩條切線l1,l2,設(shè)l1,l2與y軸分別交于點(diǎn)B,C,則△ABC的外接圓方程為( 。
A.x2+y2-3x-2y+1=0B.x2+y2-2x-3y+1=0C.x2+y2-3x-4=0D.x2+y2+x-3y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某三棱錐的正視圖和俯視圖如圖所示,則其左視圖面積為( 。
A.6B.$\frac{9}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x2-a)ex,a∈R.
(Ⅰ)當(dāng)a=0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(1,2)上存在不相等的實(shí)數(shù)m,n,使f(m)=f(n)成立,求a的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個不同的極值點(diǎn)x1,x2,求證:f(x1)f(x2)<4e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+m,\;\;0≤x≤1,\;\\ mx+5,\;\;\;\;\;\;\;\;\;\;x>1.\;\end{array}\right.$若函數(shù)f(x)的圖象與x軸有且只有兩個不同的交點(diǎn),則實(shí)數(shù)m的取值范圍為(-5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知某幾何體的三視圖如圖所示,三視圖是邊長為1的等腰直角三角形和邊長為1的正方形,則該幾何體的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,跳傘塔CD高4,在塔頂測得地面上兩點(diǎn)A,B的俯角分別是30°,45°,又測得∠ADB=30°,求AB兩地的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y+1≥0}\\{x-2y+1≤0}\\{2x-y-1≤0}\end{array}\right.$,則z=2x-3y(  )
A.有最大值-1,無最小值B.有最小值-1,無最大值
C.最小值-2,最大值3D.有最小值-2,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{sin2x-2{{sin}^2}x}}{sinx}$.
(Ⅰ)求f(x)的定義域及其最大值;
(Ⅱ)求f(x)在(0,π)上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案