橢圓的對(duì)稱軸是坐標(biāo)軸,過(guò)圓x2+y2-2x+6y+1=0x軸的公共點(diǎn),離心率為,則該橢圓方程為

[    ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x,橢圓經(jīng)過(guò)點(diǎn)M(0,
3
)
,它們?cè)趚軸上有共同焦點(diǎn),橢圓的對(duì)稱軸是坐標(biāo)軸.
(1)求橢圓的方程;
(2)若P是橢圓上的點(diǎn),設(shè)T的坐標(biāo)為(t,0)(t是已知正實(shí)數(shù)),求P與T之間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的對(duì)稱軸是坐標(biāo)軸,中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為6,焦距為4,則橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,中心是坐標(biāo)原點(diǎn),離心率為
1
3
,長(zhǎng)軸長(zhǎng)為12,那么橢圓方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,以短軸的一個(gè)端點(diǎn)和兩焦點(diǎn)為頂點(diǎn)的三角形是正三角形,且焦點(diǎn)到橢圓的最短距離是,求此橢圓方程,并寫出其中焦點(diǎn)在y軸上的橢圓的焦點(diǎn)坐標(biāo)、離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長(zhǎng)軸長(zhǎng)是26,cos∠OFA=,則橢圓的方程是(    )

A. +=1                                  B. +=1

C. +=1或+=1                     D. +=1或+=1

查看答案和解析>>

同步練習(xí)冊(cè)答案