10.化簡$\frac{\sqrt{1-2sin375°cos(-345°)}}{\sqrt{tan225°-co{s}^{2}}15°+cos165°}$.

分析 直接利用誘導公式化簡求解即可.

解答 解:$\frac{\sqrt{1-2sin375°cos(-345°)}}{\sqrt{tan225°-c{os}^{2}15°}+cos165°}$=$\frac{\sqrt{1-2sin15°cos15°}}{\sqrt{tan45°-{cos}^{2}15°}-cos15°}$=$\frac{cos15°-sin15°}{sin15°-cos15°}$=-1.

點評 本題考查誘導公式以及同角三角函數(shù)的基本關(guān)系式的應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.集合A={x|y=lg(4x2-4)},B={y|y=2x2-3},則A∩B=( 。
A.B.{x|-3≤x<-1,或x>1}C.{x|-3≤x≤-1,或x≥1}D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)y=f(x)的圖象與y=lnx的圖象關(guān)于y=x對稱,則f(1)=( 。
A.1B.eC.e2D.ln(e-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求下列各式中x的值:
(1)log749=x;
(2)log0.130.13=x;
(3)log20111=x;
(4)log${\;}_{\sqrt{3}}$3=x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$求:
(1)z=x2+y2-10y+25的最小值和最大值;
(2)z=$\frac{y+1}{x+1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.空間四點A,B,C,D滿足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=4,|$\overrightarrow{DA}$|=7,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.命題“對任意實數(shù)x,x>0”的否定是?x∈R,x≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知全集U={2,3,5},集合A={2,|a-5|},∁UA={5}.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知直線l的方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,曲線C的方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)把直線l和曲線C的方程分別化為直角坐標方程和普通方程;
(2)求曲線C上的點到直線l距離的最大值.

查看答案和解析>>

同步練習冊答案