【題目】設(shè)函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
【答案】(1)答案見解析;(2)函數(shù)在定義域上有且只有一個(gè)零點(diǎn).
【解析】試題分析:(1)由題意得函數(shù)函數(shù)的定義域,對函數(shù)求導(dǎo),再對進(jìn)行分類討論,根據(jù)與,可得函數(shù)的單調(diào)區(qū)間;(2)依題意得,結(jié)合第一問的單調(diào)性,結(jié)合函數(shù)的圖象,從兩個(gè)方面考慮函數(shù)的變化趨勢,或時(shí),從而可得零點(diǎn)的個(gè)數(shù).
試題解析:(1)函數(shù)的定義域?yàn)?/span>,,
①當(dāng)時(shí),令,解得.
∴的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,
②當(dāng)時(shí),令,解得或.
∴在和上單調(diào)遞增,在上單調(diào)遞減.
③當(dāng)時(shí),,在上單調(diào)遞增.
④當(dāng)時(shí),令,解得或,所以在和上單調(diào)遞增,在上單調(diào)遞減;
(2),①當(dāng)時(shí),由(1)知,當(dāng)時(shí),,此時(shí)無零點(diǎn),當(dāng)時(shí),.
又∵在上單調(diào)遞增
∴在上有唯一的零點(diǎn)
∴函數(shù)在定義域上有唯一的零點(diǎn),
②當(dāng)時(shí),由(1)知,當(dāng)時(shí),,此時(shí)無零點(diǎn);當(dāng)時(shí),,.
令,則,
∵在上單調(diào)遞增,,
∴在上單調(diào)遞增,得,即.
∴在上有唯一的零點(diǎn),故函數(shù)在定義域上有唯一的零點(diǎn).
綜合①②知,當(dāng)時(shí)函數(shù)在定義域上有且只有一個(gè)零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,過且與圓相切的動圓圓心為.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)的直線交曲線于,兩點(diǎn),過點(diǎn)的直線交曲線于,兩點(diǎn),且,垂足為(,,,為不同的四個(gè)點(diǎn)).
①設(shè),證明:;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓()的左焦點(diǎn)為,離心率為,過點(diǎn)且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線與曲線的極坐標(biāo)方程;
(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯(cuò)誤的是( )
A. 是否傾向選擇生育二胎與戶籍有關(guān)
B. 是否傾向選擇生育二胎與性別無關(guān)
C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點(diǎn)處有共同的切線,求實(shí)數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點(diǎn)?如果有,求出該零點(diǎn);若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上, 為橢圓的右焦點(diǎn), 分別為橢圓的左,右兩個(gè)頂點(diǎn).若過點(diǎn)且斜率不為0的直線與橢圓交于兩點(diǎn),且線段的斜率之積為.
(1)求橢圓的方程;
(2)已知直線與相交于點(diǎn),證明: 三點(diǎn)共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com