直線為異面直線,直線上有4個點,直線上有5個點,以這些點為頂點的三角形共有         個;

 

【答案】

70

【解析】

試題分析:因為直線a上有4個點,所以,可以組成線段的條數(shù)是:3+2+1=6(條),直線a上的一個點和直線b的一條線段構(gòu)成三角形的個數(shù)是:6×5=30(個),又因為,直線b上有5個點,所以,可以組成線段的條數(shù)是:4+3+2+1=10(個),直線b上的一條線段和直線a上的一個點構(gòu)成三角形的個數(shù)是:10×4=40(個),共有三角形的個數(shù):30+40=70(個),故以這些點為頂點可以畫出70個三角形.

考點:本題考查了簡單的排列組合問題

點評:運用加法原理(做一件事情,完成它有N類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,…,在第N類辦法中有mn種不同的方法,那么完成這件事情共有m1+m2+…+mn種不同的方法)和乘法原理(做一件事,完成它需要分成n個步驟,做第一 步有m1種不同的方法,做第二步有m2不同的方法,…,做第n步有mn不同的方法.那么完成這件事共有 N=m1m2m3…mn 種不同的方法)即可.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若向量
a
,
b
共線,則向量
a
,
b
所在的直線平行;
②若向量
a
b
所在的直線為異面直線,則向量
a
b
一定不共面;
③若三個向量
a
,
b
,
c
兩兩共面,則向量
a
,
b
,
c
共面;
④已知是空間的三個向量
a
,
b
c
,則對于空間的任意一個向量
p
總存在實數(shù)x,y,z使得
p
=x
a
+y
b
+z
c
;
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若向量
a
、
b
共線,則向量
a
、
b
所在的直線平行;
②若向量
a
、
b
所在的直線為異面直線,則向量
a
、
b
不共面;
③若三個向量
a
、
b
、
c
兩兩共面,則向量
a
、
b
、
c
共面;
④已知空間不共面的三個向量
a
、
b
c
,則對于空間的任意一個向量
p
,總存在實數(shù)x、y、z,使得
p
=x
a
+y
b
+z
c
;
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b為異面直線,直線c,d與a,b分別都相交,則a,b,c,d可確定的平面的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)已知命題P:“對任意a,b∈N*,都有l(wèi)g(a+b)≠lga+lgb”;命題q:“空間兩條直線為異面直線的充要條件是它們不同在任何一個平面內(nèi)”.則(  )

查看答案和解析>>

同步練習(xí)冊答案