17.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1,其弦AB的中點(diǎn)為M,若直線AB和OM的斜率都存在(O為坐標(biāo)原點(diǎn)),則兩條直線的斜率之積為-$\frac{3}{4}$.

分析 設(shè)A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.把A,B坐標(biāo)代入相減化簡即可得出.

解答 解:設(shè)A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.
由$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{12}$=1,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{12}$=1,
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{12}$=0.
∴$\frac{2{x}_{0}}{16}+\frac{2{y}_{0}}{12}$•kAB=0,
∴$\frac{1}{8}+\frac{1}{6}{k}_{OM}•{k}_{OB}$=0,
∴kOM•kOB=-$\frac{3}{4}$.
故答案為:-$\frac{3}{4}$.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、“點(diǎn)差法”、中點(diǎn)坐標(biāo)公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.與雙曲線4y2-x2=1共漸近線,且過點(diǎn)(4,$\sqrt{3}$)的雙曲線的標(biāo)準(zhǔn)方程為 (  )
A.y2-$\frac{x^2}{4}$=1B.x2-$\frac{y^2}{4}$=1C.$\frac{y^2}{4}-{x^2}$=1D.$\frac{x^2}{4}-{y^2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)P(x,y)是曲線$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{16}}$=1上的點(diǎn),F(xiàn)1(-3,0),F(xiàn)2(3,0),則必有(  )
A.|PF1|+|PF2|≤10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)點(diǎn)O為△ABC的內(nèi)部,點(diǎn)D,E分別為邊AC,BC的中點(diǎn),且$|{3\overrightarrow{OD}+2\overrightarrow{DE}}|=3$,則$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大小;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)y=sin2x+cos2x的圖象向右平移$\frac{π}{4}$個單位后,所得圖象對應(yīng)的解析式是( 。
A.y=cos2x+sin2xB.y=sin2x-cos2xC.y=cos2x-sin2xD.y=cosxsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.橢圓$\frac{x^2}{4}+{y^2}=1$兩個焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn),則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍是[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
(1)“若x>2,則x>0”的否命題
(2“?a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定
(3)“π是函數(shù)y=sinx的一個周期”或“2π是函數(shù)y=sin2x的一個周期”
(4)“x2+y2=0”是“xy=0”的必要條件
其中真命題的序號是(2)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若f(x)=3x+5x3,則滿足不等式f(m-1)+f(3-m2)>0的m的取值范圍為(-1,2).

查看答案和解析>>

同步練習(xí)冊答案