分析 設(shè)A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.把A,B坐標(biāo)代入相減化簡即可得出.
解答 解:設(shè)A(x1,y1),B(x2,y2),M(x0,y0),x0=$\frac{{x}_{1}+{x}_{2}}{2}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$,kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$.
由$\frac{{x}_{1}^{2}}{16}+\frac{{y}_{1}^{2}}{12}$=1,$\frac{{x}_{2}^{2}}{16}+\frac{{y}_{2}^{2}}{12}$=1,
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{12}$=0.
∴$\frac{2{x}_{0}}{16}+\frac{2{y}_{0}}{12}$•kAB=0,
∴$\frac{1}{8}+\frac{1}{6}{k}_{OM}•{k}_{OB}$=0,
∴kOM•kOB=-$\frac{3}{4}$.
故答案為:-$\frac{3}{4}$.
點評 本題考查了橢圓的標(biāo)準方程及其性質(zhì)、“點差法”、中點坐標(biāo)公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2-$\frac{x^2}{4}$=1 | B. | x2-$\frac{y^2}{4}$=1 | C. | $\frac{y^2}{4}-{x^2}$=1 | D. | $\frac{x^2}{4}-{y^2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |PF1|+|PF2|≤10 | B. | |PF1|+|PF2|<10 | C. | |PF1|+|PF2|≥10 | D. | |PF1|+|PF2|>10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cos2x+sin2x | B. | y=sin2x-cos2x | C. | y=cos2x-sin2x | D. | y=cosxsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com