【題目】在平面直角坐標系中,動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,給出下列四個結論: ①曲線W關于原點對稱;
②曲線W關于直線y=x對稱;
③曲線W與x軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于 ;
④曲線W上的點到原點距離的最小值為2﹣
其中,所有正確結論的序號是

【答案】②③④
【解析】解:∵動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離, ∴|x|+|y|= ,
∴|xy|+x+y﹣1=0,
∴xy>0,(x+1)(y+1)=2或xy<0,(y﹣1)(1﹣x)=0,
函數(shù)的圖象如圖所示
∴曲線W關于直線y=x對稱;
曲線W與x軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于 ;
由y=x與(x+1)(y+1)=2聯(lián)立可得x= ﹣1,∴曲線W上的點到原點距離的最小值為 ﹣1)=2﹣
∴所有正確結論的序號是②③④.
所以答案是:②③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x,y的方程C:x2+y2﹣2x﹣4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且MN= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點構成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02﹣x0﹣1>0,則¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, ,點的中點.

(1)證明: ;

(2)設點在線段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域與值域都是[﹣2,2]的兩個函數(shù)f(x)、g(x)的圖象如圖所示(實線部分),則下列四個命題中,
①方程f[g(x)]=0有6個不同的實數(shù)根;
②方程g[f(x)]=0有4個不同的實數(shù)根;
③方程f[f(x)]=0有5個不同的實數(shù)根;
④方程g[g(x)]=0有3個不同的實數(shù)根;
正確的命題是(

A.②③④
B.①④
C.②③
D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求實數(shù)a的值及f(x)的極值;
(Ⅱ)是否存在區(qū)間(t,t+ )(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點?若存在,求實數(shù)t的取值范圍,若不存在,請說明理由;
(Ⅲ)如果對任意的 ,有|f(x1)﹣f(x2)|≥k| |,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)=
(1)求實數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

同步練習冊答案