【題目】某手機公司生產(chǎn)某款手機,如果年返修率不超過千分之一,則生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2010-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)量(萬臺) | 3 | 4 | 5 | 6 | 7 | 7 | 9 | 10 | 12 |
產(chǎn)品年利潤(千萬元) | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.8 | 7.5 | 7.9 | 9.1 |
年返修量(臺) | 47 | 42 | 48 | 50 | 92 | 83 | 72 | 87 | 90 |
(1)從該公司2010-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(千萬元)關(guān)于年生產(chǎn)量(萬臺)的線性回歸方程(精確到0.01).部分計算結(jié)果:,,.
附:;線性回歸方程中,,.
【答案】(1)見解析(2)
【解析】
(1)由題可得有五個年份考核優(yōu)秀,即可求出可能的取值以及對應(yīng)的概率,得出的分布列及其數(shù)學(xué)期望。
(2)計算出去掉2015年數(shù)據(jù)之后的,,將數(shù)據(jù)代入計算,再由計算出,即可得到線性回歸方程。
解:(1)由數(shù)據(jù)可知,2012,2013,2016,2017,2018五個年份考核優(yōu)秀,
所以的所有可能取值為0,1,2,3,
,,
,,
故的分布列為:
0 | 1 | 2 | 3 | |
∴
(2)因為,,
所以去掉2015年的數(shù)據(jù)后不影響的值,
所以,
去掉2015年數(shù)據(jù)后,,,
所以,
故回歸方程為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓錐的頂點為A,底面的圓心為O,BC是底面圓的一條直徑,點D,E在底面圓上,已知,.
(1)證明:;
(2)若二面角的大小為,求直線OC與平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)必須排在前三項執(zhí)行,且執(zhí)行任務(wù)之后需立即執(zhí)行任務(wù),任務(wù)、相鄰,則不同的執(zhí)行方案共有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點F為拋物線的焦點,焦點F到直線3x-4y+3=0的距離為d1,焦點F到拋物線C的準(zhǔn)線的距離為d2,且。
(1)拋物線C的標(biāo)準(zhǔn)方程;
(2)若在x軸上存在點M,過點M的直線l分別與拋物線C相交于P、Q兩點,且為定值,求點M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)已知點,直線的極坐標(biāo)方程為,它與曲線的交點為,,與曲線的交點為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的上頂點為A,左、右焦點分別為,,直線的斜率為,點在橢圓E上,其中P是橢圓上一動點,Q點坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)作直線l與x軸垂直,交橢圓于兩點(兩點均不與P點重合),直線,與x軸分別交于點.求的最小值及取得最小值時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點,過作傾斜角互補的兩條不同直線、.
(1)求拋物線的方程及準(zhǔn)線方程;
(2)設(shè)直線、分別交拋物線于、兩點(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點,且點Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com