分析 (1)首先通過(guò)三角函數(shù)的恒等變換,把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用整體思想求出三角函數(shù)的單調(diào)遞增區(qū)間.
(2)首先利用(1)求出的函數(shù)關(guān)系式,進(jìn)一步利用角的恒等變換求出結(jié)果.
解答 解:(1)函數(shù)f(x)=cosx(2$\sqrt{3}$sinx-cosx)+sin2x
=$\sqrt{3}sin2x-{(cos}^{2}x-{sin}^{2}x)$
=$\sqrt{3}sin2x-cos2x$
=$2sin(2x-\frac{π}{6})$
令:$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$(k∈Z)
解得:$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ$
所以函數(shù)的單調(diào)遞增區(qū)間為:[$-\frac{π}{6}+kπ,\frac{π}{3}+kπ$](k∈Z)
(2)由(1)得:f(x)=$2sin(2x-\frac{π}{6})$
因?yàn)椋?f(\frac{α}{2})=\frac{1}{2}$
所以函數(shù)關(guān)系式轉(zhuǎn)化為:$2sin(α-\frac{π}{6})=\frac{1}{2}$
即:$sin(α-\frac{π}{6})=\frac{1}{4}$
$\frac{π}{6}<α<\frac{2π}{3}$,
所以:$0<α-\frac{π}{6}<\frac{π}{2}$,
則:$cos(α-\frac{π}{6})=\frac{\sqrt{15}}{4}$,
所以:$sinα=sin[(α-\frac{π}{6})+\frac{π}{6}]$=$sin(α-\frac{π}{6})cos\frac{π}{6}+cos(α-\frac{π}{6})sin\frac{π}{6}$
=$\frac{\sqrt{3}+\sqrt{15}}{8}$
點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的單調(diào)性的應(yīng)用,利用三角函數(shù)的角的恒等變換求三角函數(shù)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∝,-1) | B. | [-1,2) | C. | (-1,2] | D. | (2,+∝) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 20 | C. | 30 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com