若f(
1
x
)=
x
1-x
,則f(x)=
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可以直接將“x”用“
1
x
”代入,得到本題結(jié)論.
解答: 解:∵f(
1
x
)=
x
1-x

∴將“x”用“
1
x
”代入:
f(x)=
1
x
1-
1
x
=
1
x-1
,(x≠1).
故答案為:
1
x-1
,(x≠1,x≠0).
點(diǎn)評:本題考查了函數(shù)解析式求法,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、命題“p∨q”為真命題,則命題“p”和命題“q”均為真命題
B、已知x∈R,則“x>1”是“x>2”的充分不必要條件
C、命題“若am2<bm2,則a<b”的逆命題是真命題
D、命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的三視圖,其體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,邊a,b,c與角A,B,C分別成等差數(shù)列,且△ABC的面積為
3
2
,那么b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三角形ABC的邊長為2,D,E分別為邊AB,AC上的點(diǎn)(不與△ABC的頂點(diǎn)重合)且DE∥BC,沿DE折起,使平面ADE⊥平面BCED,得如圖所示的四棱錐,設(shè)AD=x,則四棱錐A-BCED的體積V=f(x)的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求證:{
an
2n
}
是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}為等差數(shù)列,它的前n項(xiàng)和分別為Sn,若S2010>0,S2011<0,則n=
 
時(shí),Sn有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos
3x
2
.-sin
3x
2
),
b
=(cos
x
2
,sin
x
2

(1)設(shè)函數(shù)f(x)=
a
b
,求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)=
a
b
-2λ|
a
+
b
|,若g(x)的最小值是-
3
2
,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),前四項(xiàng)之積等于64,那么a1+a4的最小值等于
 

查看答案和解析>>

同步練習(xí)冊答案